MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
2. Αν μια συνάρτηση \[f\] είναι συνεχής σε ένα διάστημα \[\Delta\] και δεν μηδενίζεται σ’ αυτό, τότε η \[f\] διατηρεί πρόσημο στο διάστημα \[\Delta\].
3. Για κάθε συνάρτηση \[f\], ορισμένη, παραγωγίσιμη και γνησίως αύξουσα στο \[\mathbb{R}\], ισχύει \[f'(x)>0\].
4. Για κάθε συνάρτηση \[f\], η οποία είναι παραγωγίσιμη στο \[A=(-\infty,0)\cup (0,+\infty)\] με \[f'(x)=0\] για κάθε \[x\in A\], ισχύει ότι η \[f\] είναι σταθερή στο \[A\].
5. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\] και \[g(x_0) \ne 0\], τότε η συνάρτηση είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[\left( \frac{f}{g} \right)' (x_0) = \frac{f(x_0)g'(x_0) - f'(x_0) g(x_0)}{[g(x_0)]^2}.\]
6. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
7. Αν οι συναρτήσεις \[f, g\] είναι παραγωγίσιμες στο \[x_0\], τότε η συνάρτηση \[f\cdot g\] είναι παραγωγίσιμη στο \[x_0\] και ισχύει:\[(f\cdot g)'(x_0) = f'(x_0) g'(x_0).\]
8. Αν ένα σημείο \[M(\alpha,\beta)\] ανήκει στη γραφική παράσταση μιας αντιστρέψιμης συνάρτησης \[f\], τότε το σημείο \[M'(\beta,\alpha)\] ανήκει στη γραφική παράσταση \[C'\] της \[f^{−1}\].
9. Έστω \[f\] μία συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν ισχύει ότι \[f(x)\ge 0\] για κάθε \[x\in[\alpha,\beta]\] και η συνάρτηση \[f\] δεν είναι παντού μηδέν στο διάστημα αυτό, τότε \[\int_\alpha^\beta f(x) dx>0\].
10. Αν οι συναρτήσεις \[f,g\] έχουν όριο στο \[x_0\] και ισχύει \[f(x)\le g(x)\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)\].
11. Αν η συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}\] και δεν είναι αντιστρέψιμη, τότε υπάρχει κλειστό διάστημα \[[\alpha,\beta]\], στο οποίο η \[f\] ικανοποιεί τις προϋποθέσεις του θεωρήματος Rolle.
12. Έστω η συνάρτηση \[f(x)=\varepsilon \varphi x\]. H συνάρτηση \[f\] είναι παραγωγίσιμη στο \[\mathbb{R}_1=\mathbb{R}–\{x| \sigma \upsilon \nu x=0\} \] και ισχύει \[f'(x)=-\frac{1}{\sigma\upsilon \nu^2 x}\].
13. Αν \[f\] συνάρτηση συνεχής στο διάστημα \[[\alpha,\beta]\] και για κάθε \[x\in [\alpha,\beta]\] ισχύει \[f(x)\ge 0\], τότε \[\int_\alpha^\beta f(x) dx >0 \].
14. Για κάθε συνάρτηση \[f\], η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο \[\mathbb{R}\], ισχύει \[f''(x)>0\] για κάθε \[x \in \mathbb{R}\].
15. Αν \[\lim_{x\to x_0}f(x)=0\] και \[f(x)>0\] κοντά στο \[x_0\], τότε \[\lim_{x\to x_0}\frac{1}{f(x)} = +\infty\].
16. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\], τότε η \[f'\] είναι πάντοτε συνεχής στο \[x_0\].
17. Αν υπάρχει το \[\lim_{x\to x_0} (f(x)+g(x))\], τότε κατ’ ανάγκη υπάρχουν τα \[\lim_{x\to x_0} f(x)\] και \[\lim_{x\to x_0} g(x)\].
18. Ένα τοπικό μέγιστο μιας συνάρτησης \[f\] μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο της \[f\].
19. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι γνησίως αύξουσα στο \[\Delta\], τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του \[\Delta\].
20. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\alpha) - G(\beta)\].
21. Κάθε συνάρτηση \[f\] συνεχής σε ένα σημείο του πεδίου ορισμού της είναι και παραγωγίσιμη στο σημείο αυτό.
22. Αν \[f, g\] είναι δύο συναρτήσεις με πεδία ορισμού \[A,B\] αντίστοιχα, τότε η \[g\circ f\] ορίζεται αν \[f(A)\cap B\ne \emptyset\].
23. Υπάρχουν συναρτήσεις που είναι 1–1, αλλά δεν είναι γνησίως μονότονες.
24. Η γραφική παράσταση της συνάρτησης \[f(x)=\sqrt{|x|}\] έχει άξονα συμμετρίας τον άξονα \[y'y\].
25. Αν η \[f\] είναι μια συνεχής συνάρτηση στο \[[\alpha,\beta]\], η οποία δεν είναι παντού μηδέν στο διάστημα αυτό και \[\int_\alpha^\beta f(x) dx =0\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές στο \[[\alpha, \beta]\].
26. Μια συνάρτηση \[f:A\to \mathbb{R}\] λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε \[x_1, x_2\in A\] ισχύει η συνεπαγωγή:αν \[x_1\ne x_2\], τότε \[f(x_1) \ne  f(x_2)\].
27. Για κάθε συνάρτηση \[f\], το μεγαλύτερο από τα τοπικά μέγιστα της \[f\], εφόσον υπάρχουν, είναι το ολικό μέγιστο της \[f\].
28. Έστω μία συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δύο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν \[f''(x)>0\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε η \[f\] είναι κυρτή στο \[\Delta\].
29. Έστω δύο συναρτήσεις \[f, g\] ορισμένες σε ένα διάστημα \[\Delta\]. Αν οι \[f, g\] είναι συνεχείς στο \[\Delta\] και \[f΄(x) = g΄(x)\] για κάθε εσωτερικό σημείο \[x\] του \[\Delta\], τότε ισχύει \[f(x) = g(x)\] για κάθε \[x\in \Delta\].
30. Έστω συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και παραγωγίσιμη σε κάθε εσωτερικό σημείο του \[\Delta\]. Αν η συνάρτηση \[f\] είναι γνησίως φθίνουσα στο \[\Delta\], τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του \[\Delta\].

    +30

    CONTACT US
    CALL US