MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ένα μπαλάκι μάζας \[m\] χτυπά σε έναν κατακόρυφο τοίχο με οριζόντια ταχύτητα μέτρου \[υ_1\] και αναπηδά από αυτόν με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί ο τοίχος στο μπαλάκι είναι \[Ν_1\]. Το ίδιο μπαλάκι χτυπά στο δάπεδο με κατακόρυφη ταχύτητα, μέτρου \[υ_1\] και αναπηδά από αυτό με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της επαφής είναι επίσης \[Δt_1\] και το μέτρο της κάθετης δύναμης που ασκεί το δάπεδο στο μπαλάκι είναι \[Ν_2\]. Για τα μέτρα των δυνάμεων \[Ν_1\] και \[Ν_2\] που ασκούνται στο μπαλάκι από τον τοίχο και το δάπεδο αντίστοιχα, ισχύει:
2. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
3. Στο παρακάτω διάγραμμα φαίνεται η γραφική παράσταση της ορμής σε συνάρτηση με το χρόνο \[p=f(t),\] ενός σώματος που προσκρούει σε ακλόνητο κατακόρυφο τοίχο. Η μέση δύναμη που ασκεί το μπαλάκι στον τοίχο κατά τη διάρκεια της κρούσης έχει μέτρο:
4. Μια σφαίρα \[Σ_1\] συγκρούεται έκκεντρα με ακίνητη σφαίρα \[Σ_2\] ίδιας μάζας. Μετά την κρούση οι σφαίρες κινούνται στο ίδιο επίπεδο και σε διευθύνσεις κάθετες μεταξύ τους. Η κρούση μεταξύ των δυο σφαιρών είναι
5. Η μονάδα μέτρησης της ορμής \[1kg·\frac{m}{s}\] είναι ισοδύναμη με την μονάδα μέτρησης:
6. Δύο παγοδρόμοι, με μάζες \[m_1\] και \[m_2\] αντίστοιχα (με \[m_1 \neq m_2\]), στέκονται ακίνητοι ο ένας απέναντι στον άλλο, πάνω σε ένα οριζόντιο παγοδρόμιο. Κάποια στιγμή ο πρώτος σπρώχνει το δεύτερο με αποτέλεσμα να κινηθούν αποκρινόμενοι με ταχύτητες σταθερού μέτρου. Κάποια επόμενη χρονική στιγμή οι αποστάσεις που έχουν διανύσει είναι \[x_1\, , \, x_2\], αντίστοιχα. Αν αγνοήσουμε όλων των ειδών τις τριβές τότε ισχύει:
7. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
8. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
9. Κατά την μετωπική ελαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που χτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\],
10. Δυο σώματα \[Σ_1\] και \[Σ_2\] που κινούνται ομόρροπα με ταχύτητες μέτρων \[2υ\] και \[υ\] αντίστοιχα συγκρούονται κεντρικά και πλαστικά. Λόγω της κρούσης εκλύεται ποσό θερμότητας \[Q_1\]. Αν τα δυο σώματα κινούνται αντίρροπα με τα ίδια μέτρα ταχυτήτων και συγκρουστούν πάλι κεντρικά και πλαστικά το ποσό θερμότητας \[Q_2\] που εκλύεται λόγω της κρούσης θα είναι
11. Δύο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[Κ_{αρχ}\] και \[Κ_{τελ}\] τις κινητικές ενέργειες του συστήματος πρίν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac{ Κ_{τελ}}{Κ_{αρχ}}\] παίρνει
12. Δύο σώματα μάζας \[m\] και \[2m\] κινούνται σε κάθετες κατευθύνσεις με ταχύτητες \[υ\] και \[\frac{υ}{2}\] αντίστοιχα και συγκρούονται πλαστικά. Το μέτρο της ταχύτητας του συσσωματώματος που δημιουργείται από τη πλαστική κρούση των σωμάτων είναι:
13. Δύο σφαίρες Α και Β με ίσες μάζες \[( m_1=m_2)\] κινούνται στην ίδια ευθεία με ταχύτητες διαφορετικού μέτρου \[υ_Α\] και \[υ_Β\] αντίστοιχα και πλησιάζουν μεταξύ τους. Ποια από τις επόμενες προτάσεις είναι σωστή; Οι ταχύτητες των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν μέτρα:
14. Μια κινούμενη ελαστική σφαίρα Α κινείται με ταχύτητα \[υ_1\] και συγκρούεται μετωπικά και ελαστικά με άλλη αρχικά ακίνητη σφαίρα Β. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
15. Ένα σώμα εκτελεί οριζόντια βολή από κάποιο ύψος \[h\]. Κατά τη κίνηση του σώματος:
16. Ένα σώμα μάζας \[m_1\] συγκρούεται μετωπικά με δεύτερο ακίνητο σώμα μάζας \[m_2\]. Aν η σύγκρουση θεωρηθεί ελαστική και η αρχική κινητική ενέργεια του \[m_1\] είναι \[K_1\] , η κινητική ενέργεια που χάνει το \[m_1\] είναι:
17. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[\vec{u}_0\] συγκρούεται κεντρικά και πλαστικά με κιβώτιο μάζας \[M=3m\] που είναι αρχικά ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης \[φ= 30^0\]. Το κεκλιμένο επίπεδο έχει μήκος \[S\] και παρουσιάζει συντελεστή τριβής \[μ=\frac{\sqrt{3}}{6}\] με το κιβώτιο. Tο μέτρο της ταχύτητας \[u_0\] που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα, μετά τη κρούση αφού ολισθήσει, να σταματήσει στη κορυφή του κεκλιμένου επιπέδου είναι:
18. Μια σφαίρα πολύ μικρής μάζας κινείται με ταχύτητα \[\vec{υ}\] και συγκρούεται κεντρικά και ελαστικά με άλλη ακίνητη σφαίρα πολύ μεγαλύτερης μάζας. Ποιες από τις επόμενες προτάσεις είναι σωστές;
19. Δύο παγοδρόμοι, Α και Β, με μάζες \[m_1= 60\, kg\] και \[m_2= 80\, kg\] αντίστοιχα, βρίσκονται σε απόσταση \[L\], σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί. Κάποια στιγμή ο Α τραβάει απότομα το σχοινί προς το μέρος του, με αποτέλεσμα να κινηθούν και οι δύο με σταθερές ταχύτητες πλησιάζοντας μεταξύ τους. Εάν ο Α διανύσει απόσταση \[L_1\] και ο Β απόσταση \[L_2\] μέχρι να συναντηθούν, τότε ισχύει:
20. Δύο μικρά σώματα συγκρούονται μετωπικά και πλαστικά. Ο λόγος της ολικής κινητικής ενέργειας του συστήματος των μαζών αμέσως μετά την κρούση προς την ολική κινητική ενέργεια των μαζών πριν την κρούση είναι \[0,75\]. Το ποσοστό της ολικής κινητικής ενέργειας πριν την κρούση που μετατράπηκε σε θερμότητα κατά την κρούση είναι:
21. Ακίνητο σώμα εκρήγνυται και διασπάται σε δύο κομμάτια με ίσες μάζες. Η εκλυόμενη ενέργεια από την έκρηξη μετατρέπεται κατά \[50\%\] σε θερμότητα. Αυτό σημαίνει ότι η κινητική ενέργεια κάθε κομματιού που προέκυψε από την έκρηξη αποτελεί:
22. Ένα μπαλάκι μάζας \[m\] προσκρούει κάθετα σε οριζόντιο πάτωμα με ταχύτητα μέτρου \[υ_1\] και αναπηδά κατακόρυφα με ταχύτητα μέτρου \[υ_2\]. Η χρονική διάρκεια της πρόσκρουσης είναι \[Δt\]. Η αντίσταση του αέρα θεωρείται αμελητέα. Το μέτρο της μέσης δύναμης που ασκείται κατά τη διάρκεια της πρόσκρουσης από το πάτωμα στο μπαλάκι είναι
23. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
24. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
25. Βλήμα μάζας \[m\] κινείται με ταχύτητα \[u_0\] και συγκρούεται πλαστικά με ακίνητο κιβώτιο μάζας \[M=4m\] που είναι δεμένο στο κάτω άκρο αβαρούς ράβδου μήκους \[\ell\]. To άλλο άκρο της ράβδου είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει το βλήμα ώστε το συσσωμάτωμα να εκτελέσει οριακά ανακύκλωση θα είναι:
26. Στο παρακάτω σχήμα φαίνονται δύο ελαστικές σφαίρες \[Σ_1\] και \[Σ_2\] με μάζες \[m_1\] και \[m_2\] αντίστοιχα, που μπορούν να κινηθούν σε λείο οριζόντιο επίπεδο ανάμεσα σε λείους κατακόρυφους τοίχους που απέχουν απόσταση \[d\]. Η σφαίρα \[Σ_2\] είναι ακίνητη σε απόσταση \[\frac{d}{4}\] από τον ένα τοίχο ενώ η \[Σ_1\] έρχεται με ταχύτητα \[\vec{u}\]. Οι δύο σφαίρες συγκρούονται μετωπικά και ελαστικά και στη συνέχεια αφού συγκρουστούν ελαστικά με τους τοίχους, συναντώνται ξανά στο μέσο της απόστασης μεταξύ αυτών. Η σχέση ανάμεσα στις αλγεβρικές τιμές των ταχυτήτων \[\vec{u}\] και \[\vec{u}_1'\] είναι:
27. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
28. Δύο σώματα έχουν μάζες \[m_1=m\] και \[m_2=4m\] και οριζόντιες σταθερές και ομόρροπες ταχύτητες με μέτρα \[u_1=8u\] και \[u_2= 3u\]. Η αλγεβρική τιμή της ορμής του συστήματος είναι:
29. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε
30. Όταν μια μικρή σφαίρα προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου, τότε:

    +30

    CONTACT US
    CALL US