MENU

Τεστ στις Κρούσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σωμάτιο \[α\] \[(m_α=4m_p)\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[υ\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου. Ο πυρήνας Π θα μπορούσε να είναι πυρήνας
2. Σώμα \[m\] κινείται με ταχύτητα \[ \vec{ u} \] και συγκρούεται κεντρικά και πλαστικά με ακίνητο σώμα \[Μ=2m\]. Η μεταβολή του μέτρου της ορμής του σώματος \[m\] είναι:
3. Μια σφαίρα μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα μάζας \[m_2\]. Το ποσοστό % της κινητικής ενέργειας της σφαίρας μάζας \[m_1\] που μεταφέρεται στη σφαίρα μάζας \[m_2\] ισούται με
4. Δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1\] και \[\vec {υ}_2\] και συγκρούονται κεντρικά και ελαστικά. Αν μετά την κρούση οι δύο σφαίρες κινούνται με ταχύτητες \[\vec {υ}_1'\] και \[\vec {υ}_2'\] τότε ισχύει:
5. Σώμα μάζας \[m\] κινείται με ταχύτητα μέτρου \[υ\] και συγκρούεται πλαστικά με ακίνητο σώμα ίδιας μάζας. Η ταχύτητα του συσσωματώματος μετά τη κρούση είναι:
6. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
7. Στο πείραμα ανακάλυψης του νετρονίου, τα άγνωστα σωματίδια (νετρόνια) συγκρούονται κεντρικά και ελαστικά με ακίνητους πυρήνες υδρογόνου (πρωτόνια). Μετά την κρούση παρατηρούμε ότι τα νετρόνια παραμένουν σχεδόν ακίνητα. Αυτό σημαίνει ότι η μάζα τους είναι:
8. Ένα πρωτόνιο με μάζα \[m_p\] εκτοξεύεται προς ακίνητο πυρήνα Π με ταχύτητα μέτρου \[u\] και τελικά επανέρχεται στο σημείο βολής με ταχύτητα σχεδόν του ίδιου μέτρου \[u\]. Ο πυρήνας Π θα μπορούσε να είναι ένας πυρήνας
9. Δυο σώματα συγκρούονται μετωπικά. Αν συμβολίσουμε με \[p_{αρχ}\] και \[p_{τελ}\] τα μέτρα των ολικών ορμών του συστήματος πριν και μετά τη κρούση αντίστοιχα, τότε το πηλίκο \[\frac {p_{αρχ}} {p_{τελ}}\] παίρνει
10. Οι τρεις ακίνητες ελαστικές σφαίρες \[Σ_1\, ,\, Σ_2\, ,\, Σ_3\] του παρακάτω σχήματος βρίσκονται πάνω σε λείο οριζόντιο δάπεδο έτσι ώστε τα κέντρα τους να βρίσκονται πάνω στην ίδια οριζόντια ευθεία και έχουν μάζες \[m_1=m\, ,\, m_2=m\, ,\, m_3=2m\] αντίστοιχα. Αρχικά οι σφαίρες είναι ακίνητες. Κάποια στιγμή δίνουμε στη σφαίρα \[Σ_2\] ταχύτητα μέτρου \[υ\] με διεύθυνση πάνω στην ευθεία που ενώνει τα κέντρα των σφαιρών και με φορά προς τα δεξιά.

Μετά το τέλος όλων των κρούσεων των σφαιρών που θεωρούνται ελαστικές και κεντρικές, η σφαίρα Σ1 έχει ταχύτητα μέτρου

11. Ένα σώμα μάζας \[m\] κινείται με ταχύτητα \[u\] και συγκρούεται κεντρικά και ελαστικά με άλλο ακίνητο σώμα της ίδιας μάζας. Αν η διάρκεια της κρούσης είναι \[Δt\], τότε το μέτρο της δύναμης που ασκήθηκε πάνω στο δεύτερο σώμα είναι:
12. Η μονάδα μέτρησης της ορμής \[1kg·\frac{m}{s}\] είναι ισοδύναμη με την μονάδα μέτρησης:
13. Όταν μια μικρή σφαίρα προσπίπτει πλάγια σε κατακόρυφο τοίχο και συγκρούεται με αυτόν ελαστικά, τότε
14. Θεωρούμε ως σύστημα τα δύο σώματα \[Σ_1,Σ_2\] και το νήμα. Τα σώματα έχουν μάζες (\[m_1=m\]) και (\[m_2=4m\]) αντίστοιχα. Ασκούμε σταθερή οριζόντια δύναμη και τα κινούμε στο λείο οριζόντιο επίπεδο. Το νήμα είναι αβαρές, μη εκτατό και διαρκώς τεντωμένο
15. Σφαίρα \[Σ_1\], μάζας \[m_1\] κινείται με ταχύτητα \[υ_1\] και συγκρούεται έκκεντρα και ελαστικά με άλλη σφαίρα \[Σ_2\], μάζας \[m_2\], που αρχικά είναι ακίνητη. Μετά την κρούση οι δύο σφαίρες κινούνται σε κάθετες διευθύνσεις με ταχύτητες \[v_1\, ,\, v_2\]. Ο λόγος των μαζών τους \[\frac{m_1}{m_2}\] είναι:
16. Σε ένα λείο οριζόντιο επίπεδο βρίσκεται μία σανίδα μάζας \[m=10\; kg\] και πάνω της ένα ακίνητο παιδί μάζας \[M=40\; kg\]. Αν το παιδί ξεκινήσει να κινείται στη σανίδα με ταχύτητα \[u_1=2\; \frac{m}{s}\] ως προς το έδαφος,
17. Σφαίρα μάζας \[m_1\] κινείται με ταχύτητα \[u_0\] και συγκρούεται κεντρικά και ελαστικά με ακίνητο κιβώτιο μάζας \[m_2=2m_1\] που είναι δεμένο στο κάτω άκρο αβαρούς και μη εκτατού νήματος μήκους \[\ell\], τo άλλο άκρο του νήματος είναι ακλόνητα στερεωμένο σε σημείο Ο γύρω από το οποίο μπορεί να περιστρέφεται όπως φαίνεται στο σχήμα. Η αρχική ταχύτητα που πρέπει να έχει η σφαίρα ώστε το κιβώτιο να εκτελέσει οριακά ανακύκλωση θα είναι:
18. Ένα σώμα εκτελεί οριζόντια βολή από κάποιο ύψος \[h\]. Κατά τη κίνηση του σώματος:
19. Για να επιβραδύνουμε ένα νετρόνιο, προκαλούμε την κρούση του με έναν πυρήνα. Για να έχει το νετρόνιo τη μικρότερη δυνατή κινητική ενέργεια μετά τη κρούση πρέπει να συγκρουστεί κεντρικά με πυρήνα:
20. Μια σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[12\frac{m}{s}\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β διπλάσιας μάζας. Ποια από τις επόμενες προτάσεις είναι η σωστή:
21. Όταν μια μικρή σφαίρα προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου, τότε:
22. Σε μια μετωπική κρούση δύο σωμάτων:
23. Σφαίρα Α μάζας \[m_1\] κινείται με ταχύτητα μέτρου \[u_1\] και συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Β μάζας \[m_2\]. Αν η ταχύτητα της σφαίρας Α μετά τη κρούση έχει μέτρο \[\frac{u_1}{4}\] και φορά αντίθετη της αρχικής ταχύτητας τότε το πηλίκο \[\frac{m_1}{m_2}\] των μαζών των δύο σφαιρών ισούται με:
24. Σφαίρα μάζας \[m_1\] προσπίπτει με ταχύτητα \[υ_1\] σε ακίνητη σφαίρα μάζας \[m_2\], με την οποία συγκρούεται κεντρικά και ελαστικά. Μετά την κρούση η σφαίρα μάζας \[m_1\] γυρίζει πίσω με ταχύτητα μέτρου ίσου με το \[\frac{1}{5}\] της αρχικής της τιμής. Για το λόγο των μαζών ισχύει
25. Κατά την μετωπική ελαστική κρούση μιας σφαίρας \[Σ_1\] μάζας \[m_1\] που χτυπάει με ταχύτητα \[υ_0\] σε ακίνητη σφαίρα \[Σ_2\] μάζας \[m_2\],
26. Μια αυτοκινητοβιομηχανία για να ελέγξει τους αερόσακους των νέων αυτοκινήτων χρησιμοποιεί δοκιμαστικές κούκλες μάζας \[80 \; kg\] που μπορούν να συγκρουστούν με ακίνητους αερόσακους . Η ταχύτητα μιας τέτοιας κούκλας είναι \[40 \; \frac{m}{s}\]. Μετά από \[0,2\; s\] η κούκλα ακινητοποιείται αφού ο αερόσακος έχει ανοίξει. Η μέση δύναμη που δέχεται η κούκλα σε αυτό το χρονικό διάστημα είναι:
27. Δύο παγοδρόμοι, με μάζες \[m_1\] και \[m_2\] αντίστοιχα (με \[m_1 \neq m_2\]), στέκονται ακίνητοι ο ένας απέναντι στον άλλο, πάνω σε ένα οριζόντιο παγοδρόμιο. Κάποια στιγμή ο πρώτος σπρώχνει το δεύτερο με αποτέλεσμα να κινηθούν αποκρινόμενοι με ταχύτητες σταθερού μέτρου. Κάποια επόμενη χρονική στιγμή οι αποστάσεις που έχουν διανύσει είναι \[x_1\, , \, x_2\], αντίστοιχα. Αν αγνοήσουμε όλων των ειδών τις τριβές τότε ισχύει:
28. Τρεις μικρές σφαίρες \[Σ_1\, ,\, Σ_2\] και \[Σ_3\] βρίσκονται ακίνητες πάνω σε λείο οριζόντιο επίπεδο. Οι σφαίρες έχουν μάζες \[m_1=m_2=m\] και \[m_3=3m\] αντίστοιχα. Δίνουμε στη σφαίρα \[Σ_1\] ταχύτητα μέτρου \[υ_1\] και συγκρούεται κεντρικά και ελαστικά με τη δεύτερη ακίνητη σφαίρα \[Σ_2\]. Στη συνέχεια η δεύτερη σφαίρα \[Σ_2\] συγκρούεται κεντρικά και ελαστικά με την τρίτη ακίνητη σφαίρα \[Σ_3\]. Η τρίτη σφαίρα αποκτά τότε ταχύτητα μέτρου \[υ_3\]. Ο λόγος των μέτρων των ταχυτήτων \[\frac{υ_3}{υ_1}\] είναι:
29. Το βλήμα μάζας \[m\] του σχήματος κινείται παράλληλα με το οριζόντιο επίπεδο και συγκρούεται πλαστικά με το κιβώτιο μάζας \[Μ\] που ισορροπεί με τη βοήθεια μικρού εμποδίου πάνω σε λείο ακλόνητο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\].
Αν η ταχύτητα του βλήματος έχει μέτρο \[u\], τότε το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση θα είναι:
30. Δυο σφαίρες \[Σ_1\] και \[Σ_2\] έχουν λόγο μαζών \[\frac{m_1}{m_2}=λ\] και κινούνται στην ίδια ευθεία με αντίθετες ταχύτητες. Τα μέτρα των ταχυτήτων των σφαιρών μετά την κεντρική ελαστική τους κρούση έχουν λόγο \[\frac{v_1'}{v_2'}\] που είναι ίσος με

    +30

    CONTACT US
    CALL US