MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Δύο σώματα με ίσες μάζες είναι προσδεμένα στα άκρα δύο ιδανικών ελατηρίων με σταθερές \[k_1\] και \[k_2\] αντίστοιχα. Τα σώματα εκτελούν α.α.τ. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των ταχυτήτων των δύο σωμάτων σε σχέση με το χρόνο.

Α. Ο λόγος των σταθερών των δύο ελατηρίων είναι:

α. \[\frac{k_1}{k_2} =\frac{1}{16}\].      β. \[\frac{k_1}{k_2} =16\].       γ. \[\frac{k_1}{k_2} =\frac{1}{4}\].    δ. \[ \frac{k_1}{k_2} =4\].

B. Ο λόγος των πλατών των δύο ταλαντώσεων είναι:

α. \[\frac{Α_1}{Α_2} =\frac{4}{3}\].                   
β. \[\frac{Α_1}{Α_2} =\frac{3}{4}\].                   
γ. \[\frac{Α_1}{Α_2} =\frac{1}{2}\].                   
δ. \[\frac{Α_1}{Α_2} =12\].

2. Αν \[Κ\] και \[U\] είναι η κινητική και δυναμική ενέργεια αντίστοιχα της α.α.τ., ποιες από τις παραπάνω προτάσεις είναι σωστές; Το έργο της δύναμης επαναφοράς \[F_{επ}\] σε μια διαδρομή από το Κ ως το Λ είναι ίσο με:
3. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

4. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των φάσεων δύο α.α.τ. σε σχέση με το χρόνο για δύο α.α.τ. Επιλέξτε ποιες από τις παρακάτω προτάσεις είναι σωστές.
5. Σε μια α.α.τ. τη στιγμή που ο ταλαντωτής διέρχεται από τη θέση ισορροπίας αντιστρέφεται η φορά:
6. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση και την \[t=0\] έχει πλάτος \[Α_0\] και ενέργεια \[E_{T,0}\]. Το πλάτος του σώματος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[ Α = Α_0 e^{ - Λ t } \] όπου \[ Λ \] μια θετική σταθερά. Στα παρακάτω σχήματα δίνονται πιθανά διαγράμματα που δείχνουν τη μεταβολή της ενέργειας της ταλάντωσης με το χρόνο. Ποιο διάγραμμα είναι το σωστό;
7. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει απομάκρυνση \[x=x_1>0\]. Αυτό σημαίνει ότι την \[t_1\]
8. Η ιδιοσυχνότητα του συστήματος ελατήριο-σώμα εξαρτάται:
9. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που η αντιτιθέμενη δύναμη είναι ανάλογη της ταχύτητάς του \[(F_{αν}=-bυ)\]. Αν την \[t=0\] η ενέργεια του ταλαντωτή είναι \[Ε_{Τ,0}\] και την \[t=t_1\] είναι \[E_{T,1}\] τότε η θερμότητα που εκλύεται απ’ την \[t=0\] ως την \[t=t_1\] είναι:
10. Στη θέση ισορροπίας μιας α.α.τ.:
11. Η ενέργεια μιας α.α.τ.:
12. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].              
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].              
γ. \[\frac {   α_{max,1}    }{   α_{max,2}   } =\sqrt{2}\].
δ. \[\frac{     α_{max,1}     }{    α_{max,2}    } =\frac{\sqrt{2}   }{2}\].

Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].                    
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].                     
δ.  \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\].

Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].             
γ. \[ \frac{ U_{T,max,1}   }{  U_{T,max,2} }=2.\].            
δ. \[  \frac{U_{T,max,1}} { U_{T,max,2}  } =\frac{\sqrt{2}}{2}\].

13. Αντιτιθέμενη δύναμη της μορφής \[F_ { αν } = - b υ \] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας δέχονται:
14. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και γωνιακής συχνότητας \[ω\].
15. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.


Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:

α. \[υ_{max,1}=2υ_{max,2}\].  
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\]. 
γ. \[υ_{max,1}=υ_{max,2}\]. 
δ. \[ υ_{max,1}=4υ_{max,2}\].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:

α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\].      β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].       γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].          δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].

16. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε\]. Αν στον ταλαντωτή προσφέρω επιπλέον ενέργεια \[ΔE=3E\], τότε το πλάτος της α.α.τ. θα μεταβληθεί κατά:
17. Στο παρακάτω σχήμα φαίνεται η μεταβολή της φάσης μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] ενώ το σώμα επιστρέφει για πρώτη φορά στη Θ.Ι. του μετά απ’ τη στιγμή που το άφησα σε χρονικό διάστημα \[Δt_1\]. Αντικαθιστώ το ελατήριο με ένα δεύτερο σταθεράς \[k_2=4k_1\] και επαναλαμβάνω το ίδιο πείραμα εκτρέποντας το σώμα κατά το ίδιο \[y_0\]. Τώρα δαπάνησα ενέργεια \[E_2\] και ο ταλαντωτής επιστρέφει στη Θ.Ι. του για πρώτη φορά σε χρονικό διάστημα \[Δt_2\].

Α. Για τις δαπανώμενες ενέργειες ισχύει:

α. \[Ε_1=4Ε_2\].                β. \[Ε_1=16Ε_2\].              γ. \[Ε_1=2Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{4}   \].

Β. Για τα χρονικά διαστήματα ισχύει:

α. \[Δt_1=Δt_2\].              
β. \[Δt_1=4Δt_2\].           
γ. \[Δt_1=2Δt_2\].            
δ. \[ Δt_1=\frac{           Δt_2        }{       \sqrt{2}    }\].

19. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει μέγιστη αρνητική επιτάχυνση. Την \[t_1=\frac{T}{6}\] ο λόγος της δυναμικής ενέργειας της α.α.τ. προς την κινητική ενέργεια είναι:
20. Σύστημα ελατήριο-σώμα του παρακάτω σχήματος τίθεται σε κίνηση.
21. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση συχνότητας \[f\]. Ποιο απ’ τα διαγράμματα δείχνει τη σχέση της συχνότητας της ταλάντωσης με τη συχνότητα του διεγέρτη;
22. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Η επιτάχυνσή του σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του δίνεται απ’ την εξίσωση \[α=-\frac{π^2}{9} x\] (S.I.). Το ελάχιστο χρονικό διάστημα για να μεταβεί ο ταλαντωτής απ’ τη Θ.Ι. του στη θέση \[x=\frac{A}{2}\] είναι:
23. Σε μια α.α.τ. το μέγεθος απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι.:
24. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Σε μια α.α.τ. η δύναμη επαναφοράς:
25. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς του και κινείται προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
26. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
27. Σε μια α.α.τ. με περίοδο \[Τ\] η διαφορά φάσης της επιτάχυνσης και της ταχύτητας του ταλαντωτή είναι \[Δφ=φ_α-φ_υ=\frac{π}{2}\]. Αυτό σημαίνει ότι αν τη στιγμή \[t_1\] η επιτάχυνση είναι μέγιστη τότε:
28. Η απλή αρμονική ταλάντωση είναι κίνηση:
29. Η δυναμική ενέργεια της α.α.τ.:
30. Στη διάρκεια μιας περιόδου της α.α.τ. ο ταλαντωτής:

    +30

    CONTACT US
    CALL US