3. Ικανή και αναγκαία συνθήκη για να εκτελέσει ένα υλικό σημείο α.α.τ. είναι αυτή που απαιτεί η συνισταμένη δύναμη που δέχεται το σημείο να είναι: 6. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ,\] το πλάτος της \[Α\], ενώ η αρχική της φάση είναι μηδενική. Το σημείο Γ της τροχιάς βρίσκεται στη θέση \[x_Γ=+\frac{Α}{2}\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
8. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνση \[x\]. Σε μια περίοδο ο ταλαντωτής διανύει διάστημα \[0,4\, m\].
Α. Το χρονικό διάστημα μεταξύ δύο διαδοχικών μηδενισμών της ταχύτητας του ταλαντωτή είναι:
α. \[0,5\, sec\].
β. \[1\, sec\].
γ. \[π\, sec\].
δ. \[\frac{π}{2}\, sec\].
Β. Η μέγιστη επιτάχυνση του ταλαντωτή είναι:
α. \[0,1 \frac{m}{s^2}\]
β. \[ 0,2 \frac{m}{s^2} \]
γ. \[ 0,4 \frac{m}{s^2} \]
δ. \[ 1 \frac{m}{s^2} \]
9. Η επιτάχυνση στην απλή αρμονική ταλάντωση είναι διάνυσμα: 12. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.
Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:
α. \[υ_{max,1}=2υ_{max,2}\].
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\].
γ. \[υ_{max,1}=υ_{max,2}\].
δ. \[ υ_{max,1}=4υ_{max,2}\].
Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\]. β. \[Ε_{Τ,1}=2Ε_{Τ,2}\]. γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\]. δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].
15. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει: 16. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι: 17. Στο παρακάτω σχήμα φαίνεται η μεταβολή της φάσης μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Για να εκτελεί ένας ταλαντωτής εξαναγκασμένη ταλάντωση πρέπει: 19. Η ενέργεια μιας α.α.τ.: 21. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].
γ. \[\frac { α_{max,1} }{ α_{max,2} } =\sqrt{2}\].
δ. \[\frac{ α_{max,1} }{ α_{max,2} } =\frac{\sqrt{2} }{2}\].
Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].
δ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\]. Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].
γ. \[ \frac{ U_{T,max,1} }{ U_{T,max,2} }=2.\].
δ. \[ \frac{U_{T,max,1}} { U_{T,max,2} } =\frac{\sqrt{2}}{2}\].
22. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\]. β. \[ t_1=4t_2\]. γ. \[t_1=t_2\]. δ. \[t_1=\frac{t_2}{2} \]. Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{ Ε_{Τ,2} }{8} \].
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2} }{4} \].
δ. \[Ε_{Τ,1}=Ε_{Τ,2} \].
23. Η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή σε μια α.α.τ. είναι \[x=A\; ημ(ωt+φ_0 )\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 27. Στο παρακάτω σχήμα φαίνονται σε κοινό σύστημα αξόνων τα διαγράμματα της δυναμικής, κινητικής, ολικής ενέργειας μιας απλής αρμονικής ταλάντωσης πλάτους Α και περιόδου Τ.
Α. Η δυναμική ενέργεια της α.α.τ. περιγράφεται στο διάγραμμα:
α. \[1\]. β. \[2\]. γ. \[3\].
Β. Οι τιμές των \[x_1,x_2\] είναι:
α. \[\pm \frac{A}{2}\]. β. \[\pm \frac{A\sqrt{2} }{2}\]. γ. \[\pm \frac{A\sqrt{3}}{2}\]. δ. \[ x_1=-\frac{A}{2}\, ,\, x_2=+\frac{A\sqrt{2} }{2} \].
28. Σε μια α.α.τ. η κινητική ενέργεια του ταλαντωτή σε σχέση με την απομάκρυνσή του δίνεται απ’ τη σχέση \[Κ=4,5-50x^2\] (S.I.). Ο ταλαντωτής έχει μάζα \[1\, kg\].A. Το πλάτος του ταλαντωτή είναι:
α. \[A=0,1\, m\]. β. \[A=0,2\, m\]. γ. \[A=0,3\, m\]. δ. \[A=0,4\, m\].
Β. Ο χρόνος μεταξύ δύο διαδοχικών περασμάτων του ταλαντωτή απ’ τη Θ.Ι. του είναι:
α. \[Δt=0,05π\, sec\]. β. \[Δt=0,1π\, sec\]. γ. \[Δt=0,15π\, sec\]. δ. \[Δt=0,2π\, sec\].
29. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει απομάκρυνση \[x=x_1>0\]. Αυτό σημαίνει ότι την \[t_1\] 30. Δύο σώματα με ίσες μάζες είναι δεμένα και ισορροπούν στα πάνω ελεύθερα άκρα δύο ιδανικών ελατηρίων που έχουν ίδιο φυσικό μήκος που τα κάτω άκρα τους είναι προσδεμένα σε οριζόντιο δάπεδο. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και απ’ τις θέσεις αυτές τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τα ελατήρια έχουν σταθερές \[k_1\], \[k_2\] με \[k_1>k_2\].