MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η ενέργεια μιας α.α.τ.:
2. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] ενώ το σώμα επιστρέφει για πρώτη φορά στη Θ.Ι. του μετά απ’ τη στιγμή που το άφησα σε χρονικό διάστημα \[Δt_1\]. Αντικαθιστώ το ελατήριο με ένα δεύτερο σταθεράς \[k_2=4k_1\] και επαναλαμβάνω το ίδιο πείραμα εκτρέποντας το σώμα κατά το ίδιο \[y_0\]. Τώρα δαπάνησα ενέργεια \[E_2\] και ο ταλαντωτής επιστρέφει στη Θ.Ι. του για πρώτη φορά σε χρονικό διάστημα \[Δt_2\].

Α. Για τις δαπανώμενες ενέργειες ισχύει:

α. \[Ε_1=4Ε_2\].                β. \[Ε_1=16Ε_2\].              γ. \[Ε_1=2Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{4}   \].

Β. Για τα χρονικά διαστήματα ισχύει:

α. \[Δt_1=Δt_2\].              
β. \[Δt_1=4Δt_2\].           
γ. \[Δt_1=2Δt_2\].            
δ. \[ Δt_1=\frac{           Δt_2        }{       \sqrt{2}    }\].

3. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\], περιόδου \[T\] και αρχικής φάσης \[\frac{π}{2}\]. Ο ταλαντωτής περνά απ’ τη θέση ισορροπίας με θετική ταχύτητα για πρώτη φορά μετά τη στιγμή \[t=0\] τη στιγμή \[t_1\] που είναι:
4. Στη διάρκεια μιας περιόδου της α.α.τ. ο ταλαντωτής:
5. Η φάση της απομάκρυνσης του ταλαντωτή απ’ τη Θ.Ι. του σε μια α.α.τ.:
6. Δύο σώματα με ίσες μάζες είναι προσδεμένα στα άκρα δύο ιδανικών ελατηρίων με σταθερές \[k_1\] και \[k_2\] αντίστοιχα. Τα σώματα εκτελούν α.α.τ. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των ταχυτήτων των δύο σωμάτων σε σχέση με το χρόνο.

Α. Ο λόγος των σταθερών των δύο ελατηρίων είναι:

α. \[\frac{k_1}{k_2} =\frac{1}{16}\].      β. \[\frac{k_1}{k_2} =16\].       γ. \[\frac{k_1}{k_2} =\frac{1}{4}\].    δ. \[ \frac{k_1}{k_2} =4\].

B. Ο λόγος των πλατών των δύο ταλαντώσεων είναι:

α. \[\frac{Α_1}{Α_2} =\frac{4}{3}\].                   
β. \[\frac{Α_1}{Α_2} =\frac{3}{4}\].                   
γ. \[\frac{Α_1}{Α_2} =\frac{1}{2}\].                   
δ. \[\frac{Α_1}{Α_2} =12\].

7. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της κινητικής ενέργειας δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με την απομάκρυνσή τους. Την \[t=0\] οι ταλαντωτές βρίσκονται στη θετική ακραία θέση τους και σταματούν στιγμιαία ταυτόχρονα για πρώτη φορά μετά τη στιγμή \[t=0\]. Ο λόγος των μαζών των δύο ταλαντωτών είναι:
8. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν τετραπλασιάσω τη σταθερά επαναφοράς \[k\] χωρίς να μεταβάλω τη συχνότητα του διεγέρτη τότε η συχνότητα της ταλάντωσης:
9. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυναμικών ενεργειών δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με την απομάκρυνσή τους. Οι ταλαντωτές έχουν ίσες μάζες. Τα χρονικά διαστήματα μεταξύ δύο διαδοχικών περασμάτων από τη Θ.Ι. τους για τον ταλαντωτή (1) και (2) είναι αντίστοιχα \[Δt_1\] και \[Δt_2\]. Ο λόγος των δύο αυτών χρονικών διαστημάτων είναι:
10. Ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση συχνότητας \[f\]. Ποιο απ’ τα διαγράμματα δείχνει τη σχέση της συχνότητας της ταλάντωσης με τη συχνότητα του διεγέρτη;
11. Η συχνότητα ενός περιοδικού φαινομένου είναι \[f=10\; Hz\]. Αυτό σημαίνει ότι:
12. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\].
13. Στο παρακάτω σχήμα φαίνονται σε κοινό σύστημα αξόνων τα διαγράμματα της δυναμικής, κινητικής, ολικής ενέργειας μιας απλής αρμονικής ταλάντωσης πλάτους Α και περιόδου Τ.


Α. Η δυναμική ενέργεια της α.α.τ. περιγράφεται στο διάγραμμα:

α. \[1\].                 β. \[2\].                 γ. \[3\].

Β. Οι τιμές των \[x_1,x_2\] είναι:

α. \[\pm \frac{A}{2}\].            β. \[\pm \frac{A\sqrt{2} }{2}\].       γ. \[\pm \frac{A\sqrt{3}}{2}\].              δ. \[ x_1=-\frac{A}{2}\, ,\, x_2=+\frac{A\sqrt{2} }{2} \].

14. Ταλαντωτής μάζας \[m=1\, kg\] εκτελεί α.α.τ. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. Η γωνιακή συχνότητα της ταλάντωσης είναι:
15. Σώμα εκτελεί α.α.τ. Σε μια θέση \[x_1\] το σώμα δέχεται δύναμη επαναφοράς που έχει μέτρο το \[50\, \%\] του μέτρου της δύναμης επαναφοράς που δέχεται σε μια ακραία θέση της τροχιάς του. Ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. στη θέση \[x_1\] είναι:
16. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει αρνητική ταχύτητα και δέχεται μηδενική δύναμη επαναφοράς. Τη χρονική στιγμή \[t_1=\frac{T}{12}\] ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. είναι:
17. Σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Στις θέσεις που η δυναμική ενέργεια της α.α.τ. είναι διπλάσια της κινητικής η ταχύτητα του σώματος είναι
18. Σε μια απλή αρμονική ταλάντωση πλάτους Α η δυναμική ενέργεια της ταλάντωσης γίνεται ίση με την κινητική στη θέση ή στις θέσεις:
19. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη που αντιστέκεται στην κίνησή του μεταβάλλεται με την αλγεβρική τιμή της ταχύτητάς του σύμφωνα με τη σχέση \[F_{αν}=-bυ\] όπου \[b\] είναι μια θετική σταθερά. Στα παρακάτω σχήματα δίνονται τα πιθανά διαγράμματα που δείχνουν τη μεταβολή του πλάτους της ταλάντωσης με το χρόνο. Το σωστό διάγραμμα είναι το:
20. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνση \[x\]. Σε μια περίοδο ο ταλαντωτής διανύει διάστημα \[0,4\, m\].

Α. Το χρονικό διάστημα μεταξύ δύο διαδοχικών μηδενισμών της ταχύτητας του ταλαντωτή είναι:

α. \[0,5\, sec\].                  
β. \[1\, sec\].                     

γ. \[π\, sec\].                     
δ. \[\frac{π}{2}\,  sec\].

Β. Η μέγιστη επιτάχυνση του ταλαντωτή είναι:

α. \[0,1 \frac{m}{s^2}\]                       
β. \[ 0,2 \frac{m}{s^2} \]
γ. \[ 0,4 \frac{m}{s^2} \]                      
δ. \[ 1 \frac{m}{s^2} \]

21. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται δύναμη αντίστασης που είναι ανάλογη κατά μέτρο με το μέτρο της ταχύτητάς του, δηλαδή είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η συνισταμένη δύναμη που δέχεται τότε ο ταλαντωτής ισούται με:
22. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η συχνότητα της ταλάντωσης:
23. Στο παρακάτω σχήμα φαίνονται οι μεταβολές των φάσεων δύο α.α.τ. σε σχέση με το χρόνο.

Α. Ο λόγος των γωνιακών συχνοτήτων είναι:

α. \[\frac{ω_1}{ω_2} =1\].       
β. \[ \frac{ ω_1}{ ω_2} =\frac{1}{2}  \].        

γ. \[\frac{ω_1}{ω_2} =\frac{1}{3}\].

Β. Αν ο λόγος των μέγιστων ταχυτήτων των δύο ταλαντωτών είναι \[   \frac{  υ_{max,1}  }{ υ_{max,2}  } =2\], τότε ο λόγος των μέγιστων επιταχύνσεών τους είναι:

α. \[ \frac{  α_{max,1} } {  α_{max,2} }=1\].              
β. \[   \frac{α_{max,1} }  {  α_{max,2}  } =\frac{1}{4}\].               
γ. \[ \frac{ α_{max,1}  }{α_{max,2}  } =\frac{2}{3}  \].

24. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

25. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνσή του. (Θεωρήστε \[\sqrt{3}\approx 1,7\]). Η απόσταση των σημείων Γ, Δ της τροχιάς του απ’ τις κοντινότερες σ’ αυτά αντίστοιχες ακραίες θέσεις της α.α.τ. είναι:
26. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
27. Η επιτάχυνση στην απλή αρμονική ταλάντωση:
28. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων δύο απλών αρμονικών ταλαντωτών ίσων μαζών σε συνάρτηση με την απομάκρυνσή τους απ’ τη Θ.Ι.
Α. Ο λόγος των περιόδων των α.α.τ. είναι:

α. \[  \frac{  Τ_1   }{  Τ_2} =4\].                    
β. \[\frac{  Τ_1}{Τ_2} =\frac{1}{4}\].                     

γ. \[\frac{Τ_1}{Τ_2} =\frac{1}{2}  \].                     
δ. \[  \frac{ Τ_1}{Τ_2} =2.  \].

Β. Ο λόγος των μέγιστων δυνάμεων επαναφοράς που δέχονται οι δύο ταλαντωτές είναι:

α. \[  \frac{  F_{επ,max,1}    }{ F_{  επ,max,2 }   } =1 \].           
β. \[  \frac{ F_{επ,max,1}  }{  F_{επ,max,2}  } =\frac{1}{2}   \].
γ. \[ \frac{ F_{επ,max,1}   }  {F_{επ,max,2}   } =4 \].
δ. \[ \frac{  F_{επ,max,1}   }{F_{επ,max,2}   } =8   \].

29. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].              
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].              
γ. \[\frac {   α_{max,1}    }{   α_{max,2}   } =\sqrt{2}\].
δ. \[\frac{     α_{max,1}     }{    α_{max,2}    } =\frac{\sqrt{2}   }{2}\].

Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].                    
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].                     
δ.  \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\].

Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].             
γ. \[ \frac{ U_{T,max,1}   }{  U_{T,max,2} }=2.\].            
δ. \[  \frac{U_{T,max,1}} { U_{T,max,2}  } =\frac{\sqrt{2}}{2}\].

30. Η ενέργεια της α.α.τ. εξαρτάται:

    +30

    CONTACT US
    CALL US