MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της δυναμικής και της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την ταχύτητά του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
2. Σε μια εξαναγκασμένη ταλάντωση η συχνότητα του ταλαντωτή:
3. Ικανή και αναγκαία συνθήκη για να εκτελέσει ένα υλικό σημείο α.α.τ. είναι αυτή που απαιτεί η συνισταμένη δύναμη που δέχεται το σημείο να είναι:
4. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση. Αν τετραπλασιάσω τη μάζα του σώματος χωρίς να μεταβάλω τη συχνότητα του διεγέρτη τότε η συχνότητα της ταλάντωσης θα:
5. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυνάμεων επαναφοράς σε συνάρτηση με την απομάκρυνσή τους για δύο απλούς αρμονικούς ταλαντωτές.

Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:
α. \[  \frac{  D_1}{  D_2  } =2\].                    
β. \[  \frac{D_1}{D_2} =\frac{1}{2}  \].         
γ. \[  \frac{D_1}{D_2} =\sqrt{2}\].                 
δ. \[\frac{D_1}{D_2} =\frac{   \sqrt{2}   } {2}\].

B. Ο λόγος των ενεργειών των δύο α.α.τ. είναι:
α. \[   \frac{   Ε_{Τ,1}       }{        Ε_{Τ,2}          } =2\].                  
β. \[   \frac{Ε_{Τ,1}  }{Ε_{Τ,2} } =\frac{1}{2}  \].                   
γ. \[\frac{Ε_{Τ,1} }   {Ε_{Τ,2}      } =4\].                  
δ. \[ \frac{ Ε_{Τ,1}  }{Ε_{Τ,2}   } =\frac{1}{4}\].
6. Ταλαντωτής εκτελεί α.α.τ. και η τροχιά που διαγράφει φαίνεται στο παρακάτω σχήμα. Η περίοδος της ταλάντωσης είναι \[Τ,\] το πλάτος της \[Α\], ενώ η αρχική της φάση είναι μηδενική. Το σημείο Γ της τροχιάς βρίσκεται στη θέση \[x_Γ=+\frac{Α}{2}\]. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές;
7. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί ελεύθερη ταλάντωση. Τότε:
8. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνση \[x\]. Σε μια περίοδο ο ταλαντωτής διανύει διάστημα \[0,4\, m\].

Α. Το χρονικό διάστημα μεταξύ δύο διαδοχικών μηδενισμών της ταχύτητας του ταλαντωτή είναι:

α. \[0,5\, sec\].                  
β. \[1\, sec\].                     

γ. \[π\, sec\].                     
δ. \[\frac{π}{2}\,  sec\].

Β. Η μέγιστη επιτάχυνση του ταλαντωτή είναι:

α. \[0,1 \frac{m}{s^2}\]                       
β. \[ 0,2 \frac{m}{s^2} \]
γ. \[ 0,4 \frac{m}{s^2} \]                      
δ. \[ 1 \frac{m}{s^2} \]

9. Η επιτάχυνση στην απλή αρμονική ταλάντωση είναι διάνυσμα:
10. Η διεγείρουσα δύναμη που δέχεται ένας ταλαντωτής όταν εκτελεί εξαναγκασμένη ταλάντωση είναι:
11. Η απλή αρμονική ταλάντωση είναι κίνηση:
12. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.


Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:

α. \[υ_{max,1}=2υ_{max,2}\].  
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\]. 
γ. \[υ_{max,1}=υ_{max,2}\]. 
δ. \[ υ_{max,1}=4υ_{max,2}\].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:

α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\].      β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].       γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].          δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].

13. Η επιτάχυνση στην απλή αρμονική ταλάντωση:
14. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
15. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει:
16. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι:
17. Στο παρακάτω σχήμα φαίνεται η μεταβολή της φάσης μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
18. Για να εκτελεί ένας ταλαντωτής εξαναγκασμένη ταλάντωση πρέπει:
19. Η ενέργεια μιας α.α.τ.:
20. Στις ακραίες θέσεις μιας α.α.τ.:
21. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].              
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].              
γ. \[\frac {   α_{max,1}    }{   α_{max,2}   } =\sqrt{2}\].
δ. \[\frac{     α_{max,1}     }{    α_{max,2}    } =\frac{\sqrt{2}   }{2}\].

Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].                    
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].                     
δ.  \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\].

Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].             
γ. \[ \frac{ U_{T,max,1}   }{  U_{T,max,2} }=2.\].            
δ. \[  \frac{U_{T,max,1}} { U_{T,max,2}  } =\frac{\sqrt{2}}{2}\].

22. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\].                 β. \[ t_1=4t_2\].                 γ. \[t_1=t_2\].                    δ. \[t_1=\frac{t_2}{2}  \].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{8}    \].              
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].          
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}  }{4}  \].              
δ. \[Ε_{Τ,1}=Ε_{Τ,2}   \].

23. Η χρονοεξίσωση της απομάκρυνσης του ταλαντωτή σε μια α.α.τ. είναι \[x=A\; ημ(ωt+φ_0 )\]. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
24. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
25. Στις ακραίες θέσεις μιας α.α.τ.:
26. Σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Στις θέσεις που η δυναμική ενέργεια της α.α.τ. είναι διπλάσια της κινητικής η ταχύτητα του σώματος είναι
27. Στο παρακάτω σχήμα φαίνονται σε κοινό σύστημα αξόνων τα διαγράμματα της δυναμικής, κινητικής, ολικής ενέργειας μιας απλής αρμονικής ταλάντωσης πλάτους Α και περιόδου Τ.


Α. Η δυναμική ενέργεια της α.α.τ. περιγράφεται στο διάγραμμα:

α. \[1\].                 β. \[2\].                 γ. \[3\].

Β. Οι τιμές των \[x_1,x_2\] είναι:

α. \[\pm \frac{A}{2}\].            β. \[\pm \frac{A\sqrt{2} }{2}\].       γ. \[\pm \frac{A\sqrt{3}}{2}\].              δ. \[ x_1=-\frac{A}{2}\, ,\, x_2=+\frac{A\sqrt{2} }{2} \].

28. Σε μια α.α.τ. η κινητική ενέργεια του ταλαντωτή σε σχέση με την απομάκρυνσή του δίνεται απ’ τη σχέση \[Κ=4,5-50x^2\] (S.I.). Ο ταλαντωτής έχει μάζα \[1\, kg\].A. Το πλάτος του ταλαντωτή είναι:

α. \[A=0,1\, m\].              β. \[A=0,2\, m\].              γ. \[A=0,3\, m\].              δ. \[A=0,4\, m\].

Β. Ο χρόνος μεταξύ δύο διαδοχικών περασμάτων του ταλαντωτή απ’ τη Θ.Ι. του είναι:

α. \[Δt=0,05π\, sec\].     β. \[Δt=0,1π\, sec\].        γ. \[Δt=0,15π\, sec\].      δ. \[Δt=0,2π\, sec\].

29. Σε μια α.α.τ. τη στιγμή \[t_1\] ο ταλαντωτής έχει απομάκρυνση \[x=x_1>0\]. Αυτό σημαίνει ότι την \[t_1\]
30. Δύο σώματα με ίσες μάζες είναι δεμένα και ισορροπούν στα πάνω ελεύθερα άκρα δύο ιδανικών ελατηρίων που έχουν ίδιο φυσικό μήκος που τα κάτω άκρα τους είναι προσδεμένα σε οριζόντιο δάπεδο. Εκτρέπω και τα δύο σώματα κατά \[d\] κατακόρυφα προς τα κάτω και απ’ τις θέσεις αυτές τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τα ελατήρια έχουν σταθερές \[k_1\], \[k_2\] με \[k_1>k_2\].

    +30

    CONTACT US
    CALL US