MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
2. Σώμα εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Για να διπλασιάσω τη μέγιστη δύναμη επαναφοράς πρέπει να προσφέρω επιπλέον ενέργεια στον ταλαντωτή ίση με:
3. Υλικό σημείο εκτελεί απλή αρμονική ταλάντωση περιόδου \[Τ\]. Ο χρόνος μεταξύ δύο διαδοχικών φορών που η δυναμική ενέργεια της α.α.τ. γίνεται ίση με την κινητική είναι:
4. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
5. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού. Αν αντικαταστήσω το σώμα με άλλο τετραπλάσιας μάζας, για να βρεθεί το σύστημα ξανά σε κατάσταση συντονισμού πρέπει η συχνότητα του διεγέρτη:
6. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=0,3e^{-Λt}\] (S.I.) όπου \[Λ\] μια θετική σταθερά. Το πλάτος γίνεται \[Α_1=0,15\, m\] τη χρονική στιγμή \[t_1=2\, s\]. Αν το αρχικό πλάτος στην ίδια ταλάντωση ήταν \[A_0'=0,4\, m\] το χρονικό διάστημα που απαιτείται για να γίνει \[Α_1'=0,2\, m\] είναι:
7. Σε μια φθίνουσα μηχανική ταλάντωση η αντιτιθέμενη δύναμη δίνεται απ’ τη σχέση \[F_{αν}=-bυ\]. Σε χρονικό διάστημα \[Δt\] ο ταλαντωτής έχει διανύσει διάστημα \[s\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
8. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

9. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της κινητικής ενέργειας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
10. Ποιες απ’ τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
11. Ταλάντωση είναι:
12. Τα σώματα \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος ηρεμούν δεμένα στα κάτω άκρα πανομοιότυπων κατακόρυφων ελατηρίων που τα άλλα άκρα τους είναι ακλόνητα στερεωμένα σε οροφή. Τα σώματα έχουν μάζες \[m_1\] και \[m_2=2m_1\] αντίστοιχα. Εκτρέπω τα σώματα κατακόρυφα προς τα πάνω μέχρι τα δύο ελατήρια ν’ αποκτήσουν το φυσικό τους μήκος και απ’ τη θέση αυτή τα αφήνω ελεύθερα να κινηθούν. Τα σώματα εκτελούν α.α.τ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ελατηρίων κατά τη διάρκεια των ταλαντώσεων είναι:
13. Το σύστημα ιδανικό ελατήριο σταθεράς \[k\] και σώμα μάζας \[m\] του παρακάτω σχήματος εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού. Το σώμα δέχεται αντιτιθέμενη δύναμη της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Ο δεύτερος νόμος του Νεύτωνα για το σύστημα γράφεται:
14. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε:
15. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=-ωΑ συν(ωt)\]. Η αντίστοιχη χρονοεξίσωση της επιτάχυνσής του είναι:
16. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

17. Ο χρόνος υποδιπλασιασμού της ενέργειας σε μια φθίνουσα μηχανική ταλάντωση που το πλάτος της μειώνεται με το χρόνο σύμφωνα με τη σχέση \[ Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά είναι:
18. Σώμα μάζας \[m_1\] εκτελεί α.α.τ. ενέργειας \[Ε_{Τ,1}\] και μέγιστης ταχύτητας \[υ_{max,1}\] πάνω σε λείο οριζόντιο επίπεδο. Όταν το σώμα βρίσκεται στη δεξιά ακραία θέση του συγκρούεται με δεύτερο σώμα μάζας \[m_2=3m_1\] που πριν την κρούση έχει κατακόρυφη ταχύτητα μέτρου \[υ_2\]. Η κρούση είναι πλαστική και το συσσωμάτωμα που προκύπτει εκτελεί και αυτό α.α.τ. με ενέργεια \[Ε_{Τ,2}\] και μέγιστη ταχύτητα \[υ_{max,2}\].
A. Για τις ενέργειες των α.α.τ. ισχύει:
α. \[Ε_{Τ,1}=2Ε_{Τ,2}\].                                         
β. \[ Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{  2  }\].   
γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].                                           
δ. \[Ε_{Τ,1}=Ε_{Τ,2}\].

Β. Για τις μέγιστες ταχύτητες  και  ισχύει:
α. \[υ_{max,1}=υ_{max,2}\]
β. \[υ_{max,1}=2υ_{max,2}\]
γ. \[υ_{max,1}=\frac{  υ_{max,2}   }{  2 }\]
δ. \[υ_{max,1}=3υ_{max,2}\]

19. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
20. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Αν \[Α_0,\, Α_1,\, Α_2\] τα πλάτη της ταλάντωσης τις χρονικές στιγμές \[ t=0,\, t_1=T,\, t_2=2T \] αντίστοιχα τότε ισχύει η σχέση:
21. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
22. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
23. Στο θάλαμο της πειραματικής διάταξης της φθίνουσας ταλάντωσης, τοποθετούμε αέρα πίεσης \[P\] και προσδίνουμε στο σύστημα ελατήριο-σώμα αρχικό πλάτος \[Α_0\]. Το πλάτος της ταλάντωσης υποδιπλασιάζεται σε χρόνο \[t_{\frac 12}\]. Κατόπιν αλλάζουμε την ποσότητα του αέρα ώστε η πίεσή του να γίνει \[P'=2P\] και προσδίνω στο σύστημα αρχικό πλάτος \[Α_0'=2Α_0\]. Στην περίπτωση αυτή το πλάτος υποδιπλασιάζεται σε χρόνο \[ t_{ \frac{1}{2} }' \] . Για τους χρόνους \[t_{ \frac{1}{2} },\, t_{ \frac{1}{2} }'\] ισχύει:
24. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς που δέχεται ένας ταλαντωτής που εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Σε μια φθίνουσα μηχανική ταλάντωση με περίοδο \[T\], το πλάτος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η αρχική ενέργεια της ταλάντωσης είναι \[E_{T,0}\]. Αν \[Ε_{Τ,1},\, Ε_{Τ,2},\, Ε_{Τ,κ},\, Ε_{Τ,κ+1}\] είναι οι ενέργειες της ταλάντωσης τις χρονικές στιγμές \[t_1=T,\, t_2=2T,\, t_κ=κT,\, t_{κ+1}=(κ+1)Τ\] (όπου \[κ\] θετικός ακέραιος) αντίστοιχα, τότε ισχύει: \[\frac{ Ε_{Τ,0} }{ Ε_{Τ,1} } =\frac{ Ε_{Τ,1} }{ Ε_{Τ,2} }=⋯=\frac{ Ε_{Τ,κ} }{ Ε_{Τ,κ+1} } =λ_2\]. Η σταθερά \[λ_2\] είναι:
26. Σώμα μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και γωνιακής συχνότητας \[ω\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
27. Ένα κρυστάλλινο ποτήρι μπορεί να σπάσει λόγω ενός ηχητικού κύματος όταν:
28. Το σύστημα των σωμάτων \[Σ_1\], \[Σ_2\] του παρακάτω σχήματος εκτελεί α.α.τ. Το \[Σ_1\] είναι δεμένο στο ιδανικό ελατήριο σταθεράς \[k\], ενώ το \[Σ_2\] ακουμπάει πάνω στο \[Σ_1\]. Οι σταθερές επαναφοράς της α.α.τ. για το κάθε σώμα είναι αντίστοιχα \[D_1\],\[D_2\]. Τα σώματα έχουν μάζες \[m_1\],\[ m_2\] αντίστοιχα με \[m_1 \neq m_2\]. Ισχύει:
29. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας ταλάντωσης τοποθετούμε ορισμένη ποσότητα αέρα μέσω της αεραντλίας και θέτουμε το σύστημα ελατήριο-σώμα σε ταλάντωση. Αν η πίεση του αέρα στο θάλαμο παραμένει συνεχώς σταθερή, ποιες από τις παρακάτω προτάσεις είναι σωστές;
30. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=30\, Hz\]. Μειώνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=35\, Hz\] στην τιμή \[f_2=27\, Hz\]. Στη διάρκεια της μείωσης αυτής:

    +30

    CONTACT US
    CALL US