MENU

Τεστ Μαθηματικών: Κεφάλαιο 3

Να επιλέξετε τη σωστή απάντηση στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Έστω \[g\] μια συνάρτηση ορισμένη σε ένα διάστημα \[Δ\]. Κάθε παράγουσα της \[\frac{g'(x)}{g(x)}, g(x) \neq 0 \] για κάθε \[x \in Δ\] είναι της μορφής \[ln|g(x)|+c, c \in \mathbb{R}\].
2. Έστω \[f(x)=1, x \in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[ \mathbb{R} \] είναι της μορφής \[F(x)=x+c\].
3. Κάθε συνεχής συνάρτηση σε διάστημα \[Δ\] έχει παράγουσα στο διάστημα αυτό.
4. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(t)\].
5. Έστω \[f\] μια συνεχής συνάρτηση σε ένα διάστημα \[[α,β]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[α,β]\], τότε \[\int_{α}^β f(t)dt=G(β)-G(α)\].
6. Έστω \[f\] συνεχής στο \[[α,β]\] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \] ,τότε \[\int_{α}^β f(x)dx \ge 0\] .
7. Όλες οι αρχικές της συνάρτησης \[f\] στο διάστημα \[Δ\] έχουν παράλληλες εφαπτομένες στο \[x_{o} \in Δ\].
8. Αν \[F\] μια παράγουσα της \[f\] σε ένα διάστημα \[Δ\], τότε κάθε παράγουσα της \[λf(x), λ \in \mathbb{R}\] στο \[Δ\] είναι της μορφής \[λF(x)+c , c \in \mathbb{R}\].
9. Έστω \[f(x)=x^{\nu}, x \in \mathbb{R}, \nu \in \mathbb{N}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= \frac{x^{\nu+1}}{\nu+1}+c, c \in \mathbb{R}\].
10. Αν μια συνάρτηση \[f\] είναι ορισμένη σε ένα διάστημα \[Δ\] , τότε υπάρχει πάντα συνάρτηση \[F\] που είναι παραγωγίσιμη στο \[Δ\] και ισχύει \[F'(x)= f(x)\], για κάθε \[x\in Δ\].
11. Έστω \[f\] συνεχής στο \[[α,β]\]. Χωρίζουμε το διάστημα \[[α,β]\] σε \[ν\] ισομήκη διαστήματα μήκους \[Δx=\frac{β-α}{ν}\] με τα σημεία \[α=x_{o}<x_{1}<x_{2}<...<x_{\nu}=β\] και επιλέγουμε αυθαίρετα \[ξ_{κ} \in [x_{κ-1}, x_{κ}]\] για κάθε \[κ \in \{1,2,...,\nu\}\]. Το όριο \[\lim_{ν \to +\infty}(\sum_{k=1}^\nu f_({ξ_{κ}})Δx)\] υπάρχει στο \[\mathbb{R}\] και είναι ανεξάρτητο από την επιλογή των σημείων \[ξ_{κ}\].
12. Κάθε παράγουσα της \[\frac {f'(x)g(x)-f(x)g'(x)}{g^{2}(x)}, g(x) \neq 0\] για κάθε \[x \in Δ\] σε διάστημα \[Δ\] είναι της μορφής \[\frac {f(x)}{g(x)}+c , c \in \mathbb{R}\].
13. Κάθε συνεχής συνάρτηση \[f\] σε ένα διάστημα \[Δ\] έχει μοναδική παράγουσα \[F\] στο διάστημα αυτό.
14. Ο Υπολογισμός του \[Ε(Ω)=\lim_{ν \to +\infty}{f(ξ_{1})+...+f_(ξ_{ν})} \cdot Δx\] μιας συνεχούς συνάρτησης \[f:[α,β]\] \[\rightarrow \mathbb{R} \] με \[f(x) \ge 0\] για κάθε \[x \in [α,β] \], \[Δx=\frac{β-α}{ν}\], εξαρτάται άμεσα από την επιλογή του σημείου \[ξ_{κ} \in [x_{κ-1}, x_{κ}], κ \in \{1,2,...,\nu\}\].
15. Έστω \[f(x)= e^{x} , x\in \mathbb{R}\]. Κάθε παράγουσα \[F\] της \[f\] στο \[\mathbb{R}\] είναι της μορφής \[F(x)= e^{x}+c , c \in \mathbb{R}\].
16. Έστω \[f: \mathbb{R} \to \mathbb{R}\] συνεχής, τότε για κάθε \[α \in \mathbb{R}\] ισχύει \[\int_{α}^α f(x)dx=0\].
17. Αν \[f\] συνεχής στο \[[α,β]\], τότε \[\int_{α}^β f(x)dx=-\int_{β}^α f(x)dx\].
18. Έστω \[f\] συνεχής στο \[[α,β]\], αν υπάρχει \[x_{o} \in [α,β]\] ώστε \[f(x_{o}) \neq 0\], τότε \[\int_{α}^βf^{2}(x) >0\].
19. Αν \[f\] συνεχής στο \[[α,β]\] και \[f(x)> 0\] για κάθε \[x \in [α,β]\] τότε \[\int_{α}^β f(x)dx > 0\].
20. Αν η συνάρτηση \[f+g\] είναι συνεχής στο \[[α,β]\], τότε \[\int_{α}^β (f(x)+g(x))dx = \int_{α}^β f(x)dx + \int_{α}^β g(x)dx\].

    +30

    CONTACT US
    CALL US