1. Τροχός ακτίνας \[R=0,5\, m\] στρέφεται γύρω από σταθερό κατακόρυφο άξονα που είναι κάθετος στις βάσεις του και περνά απ’ τα κέντρα τους. Η γωνιακή ταχύτητα του τροχού με το χρόνο δίνεται απ’ τη σχέση \[ω=4t\] (S.I.). Ποιες απ’ τις επόμενες προτάσεις είναι σωστές; 2. Οι δύο τροχοί (1), (2) του παρακάτω σχήματος είναι συνδεδεμένοι με ιμάντα και στρέφονται ομαλά επιταχυνόμενοι γύρω από σταθερούς άξονες που είναι ο καθένας κάθετος στις βάσεις του κάθε δίσκου και διέρχεται απ’ το κέντρο του χωρίς ο ιμάντας να ολισθαίνει στις περιφέρειές τους. Η φορά περιστροφής του δίσκου (1) φαίνεται στο παρακάτω σχήμα. Για τις ακτίνες των δύο δίσκων ισχύει \[R_1=2R_2\].
A) Αν η γωνιακή ταχύτητα του τροχού (1) έχει τη χρονική στιγμή \[t_1\] μέτρο \[ω_1\] τότε ο τροχός (2) την ίδια στιγμή:
α) έχει γωνιακή ταχύτητα μέτρου \[ω_2=ω_1\] και στρέφεται αντίρροπα των δεικτών του ρολογιού.
β) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\] και στρέφεται αντίρροπα της φοράς των δεικτών του ρολογιού.
γ) έχει γωνιακή ταχύτητα μέτρου \[ω_2=2ω_1\] και στρέφεται ομόρροπα με τους δείκτες του ρολογιού.
Β) Για τα μέτρα των επιτρόχιων επιταχύνσεων των περιφερειών \[α_{επ_1 },\, α_{επ_2 }\] των δύο τροχών ισχύει:
α) \[α_{επ_1 }=α_{επ_2 }\],
β) \[α_{επ_1}=2α_{επ_2}\],
γ) \[α_{επ_1}=\frac{ α_{επ_2} }{ 2 }\].
6. Στερεό εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της γωνιακής ταχύτητας του στερεού σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Σε ένα αρχικά ακίνητο σώμα που βρίσκεται εκτός πεδίου βαρύτητας ασκείται δύναμη \[\vec{F}\]. Αν ο φορέας της δύναμης \[\vec{F}\] δεν διέρχεται από το κέντρο μάζας του σώματος, τότε αυτό: 13. Κατά τη στροφική κίνηση ενός στερεού σώματος γύρω από σταθερό άξονα περιστροφής το μέτρο της γωνιακής του ταχύτητας αυξάνεται. Ποιες από τις παρακάτω προτάσεις είναι σωστές; 17. Ομογενής τροχός κυλίεται χωρίς να ολισθαίνει και η μεταφορική του κίνηση είναι ομαλά επιταχυνόμενη. Ποια απ’ τις επόμενες προτάσεις είναι σωστή; 18. Ποια από τις παρακάτω προτάσεις είναι σωστή; Το κέντρο μάζας του στερεού σώματος: 19. Τροχός εκτελεί στροφική κίνηση γύρω από σταθερό άξονα κάθετο στις βάσεις του που διέρχεται απ’ το κέντρο του. Ένα σημείο της περιφέρειάς του αυξάνει το μέτρο της γραμμικής ταχύτητάς του σύμφωνα με την εξίσωση \[υ=3t\] (S.I.). Ποιες από τις παρακάτω προτάσεις είναι σωστές; 20. Οι οδοντωτοί τροχοί του παρακάτω σχήματος έρχονται σε επαφή και στρέφονται ταυτόχρονα γύρω από σταθερό άξονα που ο καθένας είναι κάθετος στο επίπεδο των βάσεών του. Οι κινήσεις τους είναι ομαλά επιταχυνόμενες. Ποιες από τις επόμενες προτάσεις είναι σωστές; Οι δύο οδοντωτοί τροχοί:
21. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της διαγραφόμενης γωνίας με το χρόνο ενός δίσκου ακτίνας \[R=2\, m\] που εκτελεί στροφική κίνηση γύρω απ’ τον σταθερό άξονα περιστροφής που διέρχεται απ’ το κέντρο του Κ και είναι κάθετος στις βάσεις του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Δύο τροχοί (1), (2) εκτελούν στροφικές κινήσεις γύρω από σταθερούς άξονες περιστροφής που είναι κάθετοι στις βάσεις τους και περνούν απ’ τα κέντρα τους. Στα παρακάτω διαγράμματα φαίνονται οι μεταβολές των γωνιακών τους ταχυτήτων με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
25. Στην περιφέρεια του ομογενούς δίσκου που φαίνεται στο παρακάτω σχήμα έχουμε τυλίξει πολλές φορές αβαρές και μη εκτατό νήμα. Στο ελεύθερο άκρο Α του νήματος ασκούμε οριζόντια δύναμη \[F\] και ο τροχός αρχίζει την \[t=0\] να κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο ενώ το νήμα δεν ολισθαίνει στην περιφέρεια του δίσκου. Η επιτάχυνση του κέντρου μάζας του δίσκου είναι σταθερή. Μέχρι τη στιγμή \[t_1\] έχει ξετυλιχθεί νήμα μήκους \[\ell\].
A) Απ’ την \[t=0\] ως τη στιγμή \[t_1\] το κέντρο μάζας του δίσκου έχει μετατοπιστεί κατά \[Δx_{cm}\] που είναι ίσο με:
α) \[\frac{\ell}{2}\], β) \[\ell\], γ) \[2\ell\].
B) Απ’ την \[t=0\] ως τη χρονική στιγμή \[t_1\] το άκρο Α του νήματος έχει μετατοπιστεί κατά \[Δx_A\] που είναι ίσο με:
α) \[2\ell\], β) \[\ell\], γ) \[\frac{\ell}{2}\].
27. Ομογενής τροχός στρέφεται γύρω από σταθερό άξονα περιστροφής και η γωνιακή του ταχύτητα μεταβάλλεται με το χρόνο σύμφωνα με το παρακάτω διάγραμμα.
Α) Αν \[α_{γων_1 }\], \[α_{γων_2 }\] είναι οι αλγεβρικές τιμές των γωνιακών επιταχύνσεων απ’ τη στιγμή \[0\] ως την \[t_1\] και απ’ τη στιγμή \[2t_1\] ως \[4t_1\] τότε ισχύει: α) \[α_{γων_1 }=α_{γων_2 }\],
β) \[α_{γων_1 }=-α_{γων_2 }\],
γ) \[α_{γων_1 }=2α_{γων_2 }\],
δ) \[α_{γων_1 }=-2α_{γων_2 }\].
Β) Απ’ τη στιγμή \[t_1\] ως τη στιγμή \[2t_1\] ένα σημείο του τροχού απ’ το οποίο δε διέρχεται ο άξονας περιστροφής έχει:
α) και κεντρομόλο και επιτρόχια επιτάχυνση.
β) μόνο επιτρόχια επιτάχυνση.
γ) μόνο κεντρομόλο επιτάχυνση.
30. Μια κατακόρυφη ράβδος ΑΓ μήκους \[\ell\] στηρίζεται σε οριζόντιο άξονα που διέρχεται από ένα σημείο Ο της ράβδου τέτοιο ώστε \[(ΟΑ)=\frac{\ell}{4}\]. Στο άκρο Α της ράβδου ασκείται οριζόντια δύναμη μέτρου \[F_1\].
Α) Για να ισορροπεί η ράβδος πρέπει στο άκρο Γ να ασκείται
α) η οριζόντια δύναμη μέτρου \[F_2\] που είναι αντίθετη με την \[F_1\] ώστε να δίνει συνισταμένη δύναμη ίση με το μηδέν
β) η οριζόντια δύναμη \[F_3\] ώστε η συνολική ροπή ως προς το σημείο Ο να είναι ίση με το μηδέν
Β) Η οριζόντια δύναμη που τελικά πρέπει να ασκηθεί στο άκρο Γ, έχει μέτρο ίσο με:
α) \[\frac{F_1}{3}\] β) \[3F_1\] γ) \[\frac{F_1}{4}\] δ) \[\frac{3F_1}{4}\]