MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.


Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:

α. \[υ_{max,1}=2υ_{max,2}\].  
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\]. 
γ. \[υ_{max,1}=υ_{max,2}\]. 
δ. \[ υ_{max,1}=4υ_{max,2}\].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:

α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\].      β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].       γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].          δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].

2. Η ενέργεια της α.α.τ. εξαρτάται:
3. Σε μια α.α.τ. η κινητική ενέργεια του ταλαντωτή σε σχέση με την απομάκρυνσή του δίνεται απ’ τη σχέση \[Κ=4,5-50x^2\] (S.I.). Ο ταλαντωτής έχει μάζα \[1\, kg\].A. Το πλάτος του ταλαντωτή είναι:

α. \[A=0,1\, m\].              β. \[A=0,2\, m\].              γ. \[A=0,3\, m\].              δ. \[A=0,4\, m\].

Β. Ο χρόνος μεταξύ δύο διαδοχικών περασμάτων του ταλαντωτή απ’ τη Θ.Ι. του είναι:

α. \[Δt=0,05π\, sec\].     β. \[Δt=0,1π\, sec\].        γ. \[Δt=0,15π\, sec\].      δ. \[Δt=0,2π\, sec\].

4. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
5. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
6. Σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Στις θέσεις που η δυναμική ενέργεια της α.α.τ. είναι διπλάσια της κινητικής η ταχύτητα του σώματος είναι
7. Σε μια φθίνουσα ταλάντωση η δύναμη αντίστασης είναι της μορφής \[F_{αν}=-bυ\]. Η μονάδα μέτρησης στο S.I. της θετικής σταθεράς \[b\] είναι:
8. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και δέχεται δύναμη αντίστασης που είναι ανάλογη κατά μέτρο με το μέτρο της ταχύτητάς του, δηλαδή είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] θετική σταθερά. Η συνισταμένη δύναμη που δέχεται τότε ο ταλαντωτής ισούται με:
9. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει μέγιστη αρνητική επιτάχυνση. Την \[t_1=\frac{T}{6}\] ο λόγος της δυναμικής ενέργειας της α.α.τ. προς την κινητική ενέργεια είναι:
10. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
11. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς και έχει ταχύτητα προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
12. Στη θέση ισορροπίας σώματος που εκτελεί α.α.τ.
13. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] ενώ το σώμα επιστρέφει για πρώτη φορά στη Θ.Ι. του μετά απ’ τη στιγμή που το άφησα σε χρονικό διάστημα \[Δt_1\]. Αντικαθιστώ το ελατήριο με ένα δεύτερο σταθεράς \[k_2=4k_1\] και επαναλαμβάνω το ίδιο πείραμα εκτρέποντας το σώμα κατά το ίδιο \[y_0\]. Τώρα δαπάνησα ενέργεια \[E_2\] και ο ταλαντωτής επιστρέφει στη Θ.Ι. του για πρώτη φορά σε χρονικό διάστημα \[Δt_2\].

Α. Για τις δαπανώμενες ενέργειες ισχύει:

α. \[Ε_1=4Ε_2\].                β. \[Ε_1=16Ε_2\].              γ. \[Ε_1=2Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{4}   \].

Β. Για τα χρονικά διαστήματα ισχύει:

α. \[Δt_1=Δt_2\].              
β. \[Δt_1=4Δt_2\].           
γ. \[Δt_1=2Δt_2\].            
δ. \[ Δt_1=\frac{           Δt_2        }{       \sqrt{2}    }\].

14. Σε κάθε φθίνουσα μηχανική ταλάντωση:
15. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των ταχυτήτων δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.

Α. Ο λόγος των πλατών των δύο ταλαντωτών είναι:

α. \[\frac{Α_1}{Α_2} =\frac{3}{4}\].                    β. \[\frac{Α_1}{Α_2} =\frac{4}{3}\].                   

γ. \[\frac{Α_1}{Α_2} =2\].                       δ. \[\frac{Α_1}{Α_2} =\frac{1}{2}\].

Β. Ο λόγος των μέγιστων δυνάμεων επαναφοράς είναι:

α. \[\frac{    F_{επmax,1} } {F_{επmax,2}   } =3\].       
β. \[\frac{  F_{επmax,1} }{ F_{επmax,2}  } =\frac{1}{3}\].                
γ. \[\frac{F_{επmax,1}  }{  F_{επmax,2}  } =9\].                       
δ. \[  \frac{ F_{επmax,1}   }{  F_{επmax,2} } =\frac{1}{9}\].

16. Σώμα εκτελεί α.α.τ. με περίοδο \[Τ\]. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της δύναμης επαναφοράς που δέχεται ο ταλαντωτής σε συνάρτηση με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
17. Σε μια α.α.τ. η απομάκρυνση και η ταχύτητα δεν είναι συμφασικά μεγέθη. Αυτό σημαίνει ότι τα μεγέθη αυτά:
18. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\].                 β. \[ t_1=4t_2\].                 γ. \[t_1=t_2\].                    δ. \[t_1=\frac{t_2}{2}  \].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{8}    \].              
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].          
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}  }{4}  \].              
δ. \[Ε_{Τ,1}=Ε_{Τ,2}   \].

19. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].              
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].              
γ. \[\frac {   α_{max,1}    }{   α_{max,2}   } =\sqrt{2}\].
δ. \[\frac{     α_{max,1}     }{    α_{max,2}    } =\frac{\sqrt{2}   }{2}\].

Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].                    
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].                     
δ.  \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\].

Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].             
γ. \[ \frac{ U_{T,max,1}   }{  U_{T,max,2} }=2.\].            
δ. \[  \frac{U_{T,max,1}} { U_{T,max,2}  } =\frac{\sqrt{2}}{2}\].

20. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει αρνητική ταχύτητα και δέχεται μηδενική δύναμη επαναφοράς. Τη χρονική στιγμή \[t_1=\frac{T}{12}\] ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. είναι:
21. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και μέγιστης ταχύτητας \[υ_{max}\]. Μια χρονική στιγμή \[t_1\] το σώμα περνά απ’ τη θέση \[x_1\] με ταχύτητα \[υ_1\]. Η ενέργεια της ταλάντωσης τη στιγμή \[t_1\] είναι:
22. Στο παρακάτω σχήμα φαίνεται η μεταβολή της φάσης μιας α.α.τ. σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
23. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση, την \[t=0\] έχει πλάτος \[Α_0\] και η χρονική μεταβολή του πλάτους του δίνεται απ’ τη σχέση \[ A=A_0 e^{-Λt} \] όπου \[Λ\] μια θετική σταθερά. Να αντιστοιχήσετε τις συναρτήσεις του πλάτους \[A=f(t)\] και της ενέργειας \[E_T=f(t)\] με τα διαγράμματα της δεύτερης στήλης.
24. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνση \[x\]. Σε μια περίοδο ο ταλαντωτής διανύει διάστημα \[0,4\, m\].

Α. Το χρονικό διάστημα μεταξύ δύο διαδοχικών μηδενισμών της ταχύτητας του ταλαντωτή είναι:

α. \[0,5\, sec\].                  
β. \[1\, sec\].                     

γ. \[π\, sec\].                     
δ. \[\frac{π}{2}\,  sec\].

Β. Η μέγιστη επιτάχυνση του ταλαντωτή είναι:

α. \[0,1 \frac{m}{s^2}\]                       
β. \[ 0,2 \frac{m}{s^2} \]
γ. \[ 0,4 \frac{m}{s^2} \]                      
δ. \[ 1 \frac{m}{s^2} \]

25. Η διεγείρουσα δύναμη που δέχεται ένας ταλαντωτής όταν εκτελεί εξαναγκασμένη ταλάντωση είναι:
26. Αντιτιθέμενη δύναμη της μορφής \[F_ { αν } = - b υ \] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας δέχονται:
27. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η δύναμη που αντιστέκεται στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του:
28. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνσή του. (Θεωρήστε \[\sqrt{3}\approx 1,7\]). Η απόσταση των σημείων Γ, Δ της τροχιάς του απ’ τις κοντινότερες σ’ αυτά αντίστοιχες ακραίες θέσεις της α.α.τ. είναι:
29. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς του και κινείται προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
30. Ικανή και αναγκαία συνθήκη για να εκτελέσει ένα υλικό σημείο α.α.τ. είναι αυτή που απαιτεί η συνισταμένη δύναμη που δέχεται το σημείο να είναι:

    +30

    CONTACT US
    CALL US