MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Η περίοδος της περιοδικής κίνησης του ωροδείκτη ενός ρολογιού είναι:
2. Σε μια α.α.τ. το μέγεθος απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι.:
3. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει:
4. Για να διπλασιάσω την ιδιοσυχνότητα του συστήματος ελατηρίου-σώματος πρέπει:
5. Στο παρακάτω σχήμα φαίνεται η γραφική παράσταση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή σε συνάρτηση με την απομάκρυνσή του. (Θεωρήστε \[\sqrt{3}\approx 1,7\]). Η απόσταση των σημείων Γ, Δ της τροχιάς του απ’ τις κοντινότερες σ’ αυτά αντίστοιχες ακραίες θέσεις της α.α.τ. είναι:
6. Ένας απλός αρμονικός ταλαντωτής εκτελεί ταλάντωση γύρω απ’ τη Θ.Ι. του Ο μεταξύ των σημείων Κ και Λ με περίοδο \[Τ\]. Τη στιγμή \[t_1\] ο ταλαντωτής βρίσκεται στο σημείο Ζ της τροχιάς του και κινείται προς τα δεξιά. Τη χρονική στιγμή \[t_1+T\] ο ταλαντωτής:
7. Σώμα εκτελεί α.α.τ. Στις θέσεις που η επιτάχυνση του σώματος μεγιστοποιείται κατά μέτρο:
8. Η περίοδος ενός απλού αρμονικού ταλαντωτή εξαρτάται:
9. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\].
10. Τα σώματα του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] και ηρεμούν προσδεμένα στα άκρα πανομοιότυπων ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Την \[t=0\] προσδίνω στα σώματα \[Σ_1\, ,\, Σ_2\] ταχύτητες μέτρου \[υ_0\] και \[υ_0\sqrt{2} \] αντίστοιχα κατά τη διεύθυνση των αξόνων των ελατηρίων. Η ταχύτητα του \[Σ_1\] έχει φορά προς τα δεξιά και του \[Σ_2\] προς τ’ αριστερά.
Α. Ο λόγος των μέγιστων επιταχύνσεων των δύο σωμάτων είναι:
α. \[\frac{α_{max,1}}{α_{max,2}} =1\].              
β. \[ \frac{ α_{max,1}} {α_{max,2}} =2\].              
γ. \[\frac {   α_{max,1}    }{   α_{max,2}   } =\sqrt{2}\].
δ. \[\frac{     α_{max,1}     }{    α_{max,2}    } =\frac{\sqrt{2}   }{2}\].

Β. Οι αρχικές φάσεις των δύο α.α.τ. μπορεί να είναι:
α. \[φ_{0,1}=π\] και \[φ_{0,2}=π\].                    
β. \[φ_{0,1}=π\] και \[φ_{0,2}=0\].
γ. \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{π}{2}\].                     
δ.  \[φ_{0,1}=π\] και \[φ_{0,2}=\frac{3π}{2}\].

Γ. Ο λόγος των μέγιστων δυναμικών ενεργειών των δύο ταλαντωτών είναι:
α. \[ \frac{U_{T,max,1}}{U_{T,max,2}} =1\].
β. \[ \frac{ U_{T,max,1}}{U_{T,max,2}} =\frac{1}{4}\].             
γ. \[ \frac{ U_{T,max,1}   }{  U_{T,max,2} }=2.\].            
δ. \[  \frac{U_{T,max,1}} { U_{T,max,2}  } =\frac{\sqrt{2}}{2}\].

11. Ταλαντωτής μάζας \[m\] εκτελεί α.α.τ. πλάτους \[Α\] και γωνιακής συχνότητας \[ω\].
12. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας του σώματος. Αν \[Α_0\] το πλάτος της ταλάντωσης τη στιγμή \[t=0\] και \[Λ\] μια άλλη θετική σταθερά, το πλάτος της ταλάντωσης εξαρτάται απ’ το χρόνο σύμφωνα με τη σχέση:
13. Ένα περιοδικό φαινόμενο επαναλαμβάνεται \[40\] φορές σε χρονικό διάστημα \[8\; sec\]. Η περίοδος του φαινομένου είναι:
14. Η διεγείρουσα δύναμη που δέχεται ένας ταλαντωτής όταν εκτελεί εξαναγκασμένη ταλάντωση είναι:
15. Σε κάθε φθίνουσα μηχανική ταλάντωση:
16. Αντιτιθέμενη δύναμη της μορφής \[F_ { αν } = - b υ \] όπου \[b\] θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητας δέχονται:
17. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Αν διπλασιάσω το πλάτος της α.α.τ. του ίδιου ταλαντωτή, τότε:
18. Η ενέργεια μιας α.α.τ.:
19. Η ενέργεια της α.α.τ. εμφανίζεται με μορφή:
20. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη που αντιστέκεται στην κίνησή του μεταβάλλεται με την αλγεβρική τιμή της ταχύτητάς του σύμφωνα με τη σχέση \[F_{αν}=-bυ\] όπου \[b\] είναι μια θετική σταθερά. Στα παρακάτω σχήματα δίνονται τα πιθανά διαγράμματα που δείχνουν τη μεταβολή του πλάτους της ταλάντωσης με το χρόνο. Το σωστό διάγραμμα είναι το:
21. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των δυναμικών ενεργειών δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με την απομάκρυνσή τους. Οι ταλαντωτές έχουν ίσες μάζες. Τα χρονικά διαστήματα μεταξύ δύο διαδοχικών περασμάτων από τη Θ.Ι. τους για τον ταλαντωτή (1) και (2) είναι αντίστοιχα \[Δt_1\] και \[Δt_2\]. Ο λόγος των δύο αυτών χρονικών διαστημάτων είναι:
22. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
23. Η επιτάχυνση στην απλή αρμονική ταλάντωση:
24. Σώμα εκτελεί α.α.τ. πλάτους \[Α\], γωνιακής συχνότητας \[ω\] και ενέργειας \[E_T\]. Σε μια θέση \[x_1\] της τροχιάς του αποκτά ταχύτητα που έχει μέτρο ίσο με το μισό του μέτρου της ταχύτητας που έχει όταν περνά απ’ τη θέση που μηδενίζεται η επιτάχυνσή του. Στη θέση \[x_1\]:

Α. για την επιτάχυνση  του σώματος ισχύει:

α. \[|α_1|=ω^2 Α\].      β. \[ |α_1|=\frac{ω^2 Α}{2} \].       γ. \[ |α_1|=\frac{ω^2 Α\sqrt{3}}{2} \].      δ. \[  |α_1|=\frac{ω^2Α \sqrt{2} }{2} \].

B. για τη δυναμική ενέργεια της α.α.τ. ισχύει:

α. \[U_{T_1}=E_T\].           β. \[U_{T_1}=\frac{E_T}{2}\].       γ. \[U_{T_1}=\frac{E_T}{3}\].          δ. \[ U_{T_1}=\frac{3E_T}{4}\].

25. Σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max}\]. Στις θέσεις που η δυναμική ενέργεια της α.α.τ. είναι διπλάσια της κινητικής η ταχύτητα του σώματος είναι
26. Σε μια α.α.τ. η απομάκρυνση και η ταχύτητα δεν είναι συμφασικά μεγέθη. Αυτό σημαίνει ότι τα μεγέθη αυτά:
27. Υλικό σημείο εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Τη χρονική στιγμή \[t=0\] ο ταλαντωτής έχει απομάκρυνση \[x=A\]. Ο ταλαντωτής περνά για δεύτερη φορά απ’ τη Θ.Ι. του τη χρονική στιγμή:
28. Στο παρακάτω σχήμα φαίνονται οι γραφικές παραστάσεις των επιταχύνσεων δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με το χρόνο. Οι μάζες τους ικανοποιούν τη σχέση \[m_1=2m_2\].


Α. Ο λόγος των σταθερών επαναφοράς των δύο ταλαντωτών είναι:

α. \[\frac{D_1}{D_2} =1\].                
β. \[\frac{D_1}{D_2} =\frac{1}{8}\].                 
γ. \[\frac{D_1}{D_2} =4\].                  
δ. \[ \frac{D_1}{D_2} =\frac{1}{2} \].
Β. Ο λόγος των ενεργειών των δύο ταλαντωτών είναι:

α. \[ \frac{ Ε_{Τ,1}}{Ε_{Τ,2}} =32\]
β. \[ \frac{Ε_{Τ,1}   }{Ε_{Τ,2} }=\frac{1}{32}  \]
γ. \[ \frac{Ε_{Τ,1}   }{Ε_{Τ,2} } =\frac{1}{4}  \]
δ. \[\frac{ Ε_{Τ,1}   }{  Ε_{Τ,2}  } =4\]

29. Σε μια φθίνουσα μηχανική ταλάντωση ενός σώματος που η δύναμη που αντιστέκεται στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] μια θετική σταθερά και \[υ\] η αλγεβρική τιμή της ταχύτητάς του:
30. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:

    +30

    CONTACT US
    CALL US