1. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.: 3. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\]. β. \[ t_1=4t_2\]. γ. \[t_1=t_2\]. δ. \[t_1=\frac{t_2}{2} \]. Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{ Ε_{Τ,2} }{8} \].
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2} }{4} \].
δ. \[Ε_{Τ,1}=Ε_{Τ,2} \].
5. Η εξίσωση \[Κ=8-2x^2\] (S.I.) δίνει τη σχέση της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την απομάκρυνσή του \[x\] απ’ τη Θ.Ι. του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και του πλάτους \[Α\] είναι: 6. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει: 8. Σε μια α.α.τ. στη διάρκεια μιας περιόδου: 10. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι: 12. Στη διάρκεια μιας περιόδου της α.α.τ. ο ταλαντωτής: 14. Στη θέση ισορροπίας μιας α.α.τ.: 16. Η συχνότητα ενός περιοδικού φαινομένου είναι \[f=10\; Hz\]. Αυτό σημαίνει ότι: 17. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.
Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:
α. \[υ_{max,1}=2υ_{max,2}\].
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\].
γ. \[υ_{max,1}=υ_{max,2}\].
δ. \[ υ_{max,1}=4υ_{max,2}\].
Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\]. β. \[Ε_{Τ,1}=2Ε_{Τ,2}\]. γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\]. δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].
18. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών \[(1)\], \[(2)\] σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.
Α. Για τις μέγιστες επιταχύνσεις των δύο ταλαντωτών ισχύει:
α. \[α_{max,1}=2α_{max,2}\].
β. \[α_{max,1}=\frac{ α_{max,2} }{2}\].
γ. \[α_{max,1}=4α_{max,2}\].
δ. \[ α_{max,1}=\frac{α_{max,2}}{4}\].
B. Για τις μέγιστες δυναμικές ενέργειες των δύο ταλαντωτών ισχύει:
α. \[U_{Tmax,1}=U_{Tmax,2}\].
β. \[U_{Tmax,1}=\frac{U_{Tmax,2}}{2}\].
γ. \[U_{Tmax,1}=2U_{Tmax,2}\].
δ. \[U_{Tmax,1}=4U_{Tmax,2}\].
22. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].
Α. Η σχέση των \[E_1\], \[E_2\] είναι:
α. \[Ε_1=Ε_2\]. β. \[Ε_1=2Ε_2\]. γ. \[Ε_1=4Ε_2\]. δ. \[Ε_1=\frac{Ε_2}{16}\].
B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\] είναι:
α. \[υ_{max,1}=υ_{max,2}\].
β. \[υ_{max,1}=2υ_{max,2}\].
γ. \[υ_{max,1}=4υ_{max,2}\].
δ. \[υ_{max,1}=\frac{υ_{max,2} } { 4 } \].
23. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχήσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Κινητική ενέργεια
γ. Δυναμική ενέργεια ταλάντωσης

24. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχίσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Δυναμική ενέργεια ταλάντωσης
γ. Κινητική ενέργεια ταλάντωσης

25. Σε κάθε φθίνουσα μηχανική ταλάντωση: 27. Η δυναμική ενέργεια της α.α.τ. με περίοδο Τ γίνεται ίση με την κινητική της: