MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Εύκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ.:
2. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και περιόδου \[Τ\]. Η επιτάχυνσή του σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. του δίνεται απ’ την εξίσωση \[α=-\frac{π^2}{9} x\] (S.I.). Το ελάχιστο χρονικό διάστημα για να μεταβεί ο ταλαντωτής απ’ τη Θ.Ι. του στη θέση \[x=\frac{A}{2}\] είναι:
3. Τα σώματα \[Σ_1\] και \[Σ_2\] του παρακάτω σχήματος έχουν μάζες \[m_1=m\] και \[m_2=2m\] αντίστοιχα και ηρεμούν στερεωμένα στα άκρα ιδανικών ελατηρίων πάνω σε λείο οριζόντιο δάπεδο. Τα ελατήρια έχουν σταθερές επαναφοράς \[k_1=k\] και \[k_2=2k\]. Εκτρέπω τα σώματα κατά τη διεύθυνση των αξόνων των ελατηρίων κατά \[x_0\] και \[2x_0\] αντίστοιχα προς τα δεξιά και την \[t=0\] τα αφήνω ελεύθερα. Τα σώματα εκτελούν α.α.τ. Τη στιγμή \[t_1\] και \[t_2\] αντίστοιχα τα σώματα \[Σ_1\], \[Σ_2\] περνούν απ’ τη Θ.Ι. τους για πρώτη φορά μετά τη στιγμή \[t=0\].
A. Για τους χρόνους , ισχύει:
α. \[t_1=2t_2\].                 β. \[ t_1=4t_2\].                 γ. \[t_1=t_2\].                    δ. \[t_1=\frac{t_2}{2}  \].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:
α. \[Ε_{Τ,1}=\frac{  Ε_{Τ,2}  }{8}    \].              
β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].          
γ. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}  }{4}  \].              
δ. \[Ε_{Τ,1}=Ε_{Τ,2}   \].

4. Ταλαντωτής εκτελεί α.α.τ. περιόδου \[Τ\]. Την \[t=0\] ο ταλαντωτής έχει αρνητική ταχύτητα και δέχεται μηδενική δύναμη επαναφοράς. Τη χρονική στιγμή \[t_1=\frac{T}{12}\] ο λόγος της κινητικής προς τη δυναμική ενέργεια της α.α.τ. είναι:
5. Η εξίσωση \[Κ=8-2x^2\] (S.I.) δίνει τη σχέση της κινητικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την απομάκρυνσή του \[x\] απ’ τη Θ.Ι. του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και του πλάτους \[Α\] είναι:
6. Η περίοδος ενός περιοδικού φαινομένου είναι \[2\; s\]. Αυτό σημαίνει:
7. Σε μια α.α.τ. το μέγεθος απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι.:
8. Σε μια α.α.τ. στη διάρκεια μιας περιόδου:
9. Ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών στιγμιαίων μηδενισμών της ταχύτητας του ταλαντωτή είναι:
10. Η εξίσωση \[U_T=32-2υ^2\] (S.I.) δίνει τη σχέση της δυναμικής ενέργειας ενός απλού αρμονικού ταλαντωτή με την ταχύτητά του. Οι τιμές της ενέργειας της α.α.τ. \[Ε_Τ\] και της μέγιστης ταχύτητας \[υ_{max}\] είναι:
11. Σε μια α.α.τ. η χρονοεξίσωση της ταχύτητας του ταλαντωτή είναι \[υ=υ_{max}\; συν(ωt+φ_0 )\]. Η αντίστοιχη χρονοεξίσωση της απομάκρυνσης του ταλαντωτή είναι:
12. Στη διάρκεια μιας περιόδου της α.α.τ. ο ταλαντωτής:
13. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Το χρονικό διάστημα μεταξύ δύο διαδοχικών περασμάτων του σώματος απ’ τη Θ.Ι. του είναι:
14. Στη θέση ισορροπίας μιας α.α.τ.:
15. Η δυναμική ενέργεια της α.α.τ.:
16. Η συχνότητα ενός περιοδικού φαινομένου είναι \[f=10\; Hz\]. Αυτό σημαίνει ότι:
17. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών (1), (2) σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.


Α. Οι μέγιστες ταχύτητες των δύο σωμάτων ικανοποιούν τη σχέση:

α. \[υ_{max,1}=2υ_{max,2}\].  
β. \[υ_{max,1}=\frac{υ_{max,2}}{2}\]. 
γ. \[υ_{max,1}=υ_{max,2}\]. 
δ. \[ υ_{max,1}=4υ_{max,2}\].

Β. Για τις ενέργειες των δύο ταλαντωτών ισχύει:

α. \[Ε_{Τ,1}=\frac{Ε_{Τ,2}}{2}\].      β. \[Ε_{Τ,1}=2Ε_{Τ,2}\].       γ. \[Ε_{Τ,1}=4Ε_{Τ,2}\].          δ. \[ Ε_{Τ,1}=Ε_{Τ,2}\].

18. Στο παρακάτω σχήμα φαίνονται τα διαγράμματα της απομάκρυνσης δύο ταλαντωτών \[(1)\], \[(2)\] σε σχέση με το χρόνο. Οι ταλαντωτές έχουν ίσες μάζες.

Α. Για τις μέγιστες επιταχύνσεις των δύο ταλαντωτών ισχύει:

α. \[α_{max,1}=2α_{max,2}\].  
β. \[α_{max,1}=\frac{  α_{max,2}  }{2}\]. 
γ. \[α_{max,1}=4α_{max,2}\].  
δ. \[ α_{max,1}=\frac{α_{max,2}}{4}\].

B. Για τις μέγιστες δυναμικές ενέργειες των δύο ταλαντωτών ισχύει:

α. \[U_{Tmax,1}=U_{Tmax,2}\].                   
β. \[U_{Tmax,1}=\frac{U_{Tmax,2}}{2}\].  
γ. \[U_{Tmax,1}=2U_{Tmax,2}\].                                  
δ. \[U_{Tmax,1}=4U_{Tmax,2}\].

19. Ταλαντωτής μάζας \[m=1\, kg\] εκτελεί α.α.τ. Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της δύναμης επαναφοράς του ταλαντωτή σε συνάρτηση με την απομάκρυνσή του απ’ τη Θ.Ι. Η γωνιακή συχνότητα της ταλάντωσης είναι:
20. Η ενέργεια της α.α.τ. εξαρτάται:
21. Σε μια α.α.τ. τη στιγμή που ο ταλαντωτής διέρχεται από τη θέση ισορροπίας αντιστρέφεται η φορά:
22. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο πάνω άκρο κατακόρυφου ελατηρίου σταθεράς \[k\]. Εκτρέπω το σώμα κατά \[y_0\] κατακόρυφα προς τα κάτω και απ’ τη θέση αυτή το αφήνω ελεύθερο να εκτελέσει α.α.τ. Η ενέργεια που δαπάνησα είναι \[Ε_1\] και η μέγιστη ταχύτητα είναι \[υ_{max,1}\]. Αντικαθιστώ το σώμα με άλλο μάζας \[4m\] και επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας το δεύτερο σώμα πάλι κατά \[y_0\] από τη Θ.Ι. του. Τώρα δαπάνησα ενέργεια \[Ε_2\] και το δεύτερο σώμα κατά την α.α.τ. έχει μέγιστη ταχύτητα \[υ_{max,2}\].

Α. Η σχέση των \[E_1\], \[E_2\]  είναι:

α. \[Ε_1=Ε_2\].                  β. \[Ε_1=2Ε_2\].                γ. \[Ε_1=4Ε_2\].                δ. \[Ε_1=\frac{Ε_2}{16}\].

B. Η σχέση των \[υ_{max,1} \, , \, υ_{max,2}\]  είναι:

α. \[υ_{max,1}=υ_{max,2}\].     
β. \[υ_{max,1}=2υ_{max,2}\].   
γ. \[υ_{max,1}=4υ_{max,2}\].   
δ. \[υ_{max,1}=\frac{υ_{max,2}  }  {  4  }   \].

23. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχήσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.α. Ενέργεια ταλάντωσης
β. Κινητική ενέργεια
γ. Δυναμική ενέργεια ταλάντωσης

24. Υλικό σημείο εκτελεί α.α.τ. Να αντιστοιχίσετε τα παρακάτω μεγέθη με τα αντίστοιχα διαγράμματα.

α. Ενέργεια ταλάντωσης
β. Δυναμική ενέργεια ταλάντωσης
γ. Κινητική ενέργεια ταλάντωσης

25. Σε κάθε φθίνουσα μηχανική ταλάντωση:
26. Επιλέξτε ποιες απ’ τις παρακάτω προτάσεις είναι σωστές. Η δύναμη επαναφοράς σε μια α.α.τ.:
27. Η δυναμική ενέργεια της α.α.τ. με περίοδο Τ γίνεται ίση με την κινητική της:
28. Στο παρακάτω διάγραμμα φαίνονται οι γραφικές παραστάσεις της κινητικής ενέργειας δύο απλών αρμονικών ταλαντωτών σε συνάρτηση με την απομάκρυνσή τους. Την \[t=0\] οι ταλαντωτές βρίσκονται στη θετική ακραία θέση τους και σταματούν στιγμιαία ταυτόχρονα για πρώτη φορά μετά τη στιγμή \[t=0\]. Ο λόγος των μαζών των δύο ταλαντωτών είναι:
29. Η απλή αρμονική ταλάντωση είναι κίνηση:
30. Η περίοδος της περιοδικής κίνησης του ωροδείκτη ενός ρολογιού είναι:

    +30

    CONTACT US
    CALL US