MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Μέτριο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Στο παρακάτω σχήμα το ιδανικό ελατήριο έχει σταθερά \[k\] και το σώμα μάζα \[m\]. Ο ταλαντωτής εκτελεί εξαναγκασμένη μηχανική ταλάντωση μικρής απόσβεσης. Για μια συγκεκριμένη τιμή της συχνότητας \[f_1\] του διεγέρτη η απομάκρυνση του ταλαντωτή απ’ τη Θ.Ι. του δίνεται απ’ τη σχέση \[x=A ημ \frac 13 \sqrt{\frac km} t\].
A. Για δύο διαφορετικές τιμές της περιόδου του διεγέρτη \[ T_1,\, T_2\] με \[ T_1 > T_2 \] παρατηρώ ότι το πλάτος της ταλάντωσης εμφανίζει την ίδια τιμή \[A_1\]. Για την τιμή της \[T_2\]  ισχύει:

α) \[Τ_2=2π\sqrt{\frac mk}\].       β) \[ Τ_2 > 2π\sqrt{ \frac mk } \].       γ) \[ Τ_2 < 2π\sqrt{ \frac mk }\].

B. Για να βρεθεί ο ταλαντωτής σε συντονισμό για τη συχνότητα \[f_1\] του διεγέρτη πρέπει να αντικαταστήσω το ελατήριο με άλλο σταθεράς \[k'\] για την οποία ισχύει:

α) \[k'=\frac{k}{3} \].                   β) \[k'=3k\].                    γ) \[k'=\frac{k}{9}\].                    δ) \[k'=9k\].

2. Τρία σώματα με ίσες μάζες \[m_1 = m_2 = m_3 = 1\, kg\] έχουν προσδεθεί στα κάτω άκρα κατακόρυφων ιδανικών ελατηρίων που τα πάνω άκρα τους στερεώνονται σε οριζόντια μεταλλική ράβδο όπως φαίνεται στο παρακάτω σχήμα. Τα ελατήρια έχουν σταθερές \[k_1 = 25 \frac Nm,\, k_2=100 \frac Nm\] και \[k_3=200 \frac Nm\] αντίστοιχα. Με τη βοήθεια κατακόρυφης περιοδικής δύναμης που ασκώ στη ράβδο, εξαναγκάζω τα τρία συστήματα σε ταλάντωση. Η συχνότητα της διεγείρουσας δύναμης είναι σταθερή και ίση με \[f_δ=\frac{5}{π} Hz\], ενώ η ράβδος παραμένει συνεχώς οριζόντια. Η σταθερά απόσβεσης είναι μικρή και για τα τρία συστήματα.

Α. Για τις συχνότητες ταλάντωσης των τριών συστημάτων ισχύει:

α) \[f_3 > f_2 > f_1\].          β) \[ f_1 > f_2 > f_3\].          γ) \[ f_1 = f_2 = f_3\].

B. Για τα πλάτη ταλάντωσης των τριών συστημάτων ισχύει:

α) το Σ1 έχει το μεγαλύτερο πλάτος.

β) το Σ2 έχει το μεγαλύτερο πλάτος.

γ) το Σ3 έχει το μεγαλύτερο πλάτος.

δ) και τα τρία σώματα έχουν ίσα πλάτη.

Γ. Αν αυξήσω τη συχνότητα της διεγείρουσας δύναμης, τότε το πλάτος του σώματος Σ1:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα μείνει σταθερό.

3. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια απλή αρμονική ταλάντωση για τα μεγέθη απομάκρυνση και ταχύτητα του ταλαντωτή ισχύει:
4. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\], το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Αν \[Ε_{Τ,κ}\] και \[Ε_{Τ,κ+1}\] η ενέργεια της ταλάντωσης τις χρονικές στιγμές \[t_1=κT\] και \[t_2=(κ+1)T\] (όπου \[κ\] θετικός ακέραιος), ποιες από τις παρακάτω προτάσεις είναι σωστές; Για το πηλίκο \[ \frac{ Ε_{Τ,κ} } { Ε_{Τ,κ+1} } \] ισχύει ότι:
5. Σώμα εκτελεί α.α.τ. Στο παρακάτω σχήμα φαίνεται το διάγραμμα της μεταβολής της ταχύτητας του ταλαντωτή σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
6. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της μειώνεται εκθετικά με το χρόνο. Ο χρόνος υποδιπλασιασμού του πλάτους είναι \[t_{\frac{1}{2}}\] ενώ της ενέργειας είναι \[t_{ \frac{1}{2} }'\]. Το πηλίκο \[\frac{ t_{ \frac 12 } }{ t_{\frac 12}' }\] είναι:
7. Σύστημα ελατήριο-σώμα ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα περιστροφής \[f_1 < f_0\]. Αν αντικαταστήσω το ελατήριο με άλλο μεγαλύτερης σταθεράς \[k\] τότε:

Α. η περίοδος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.             γ) θα παραμείνει σταθερή.

Β. το πλάτος της ταλάντωσης:

α) θα αυξηθεί.             β) θα μειωθεί.      γ) θα παραμείνει σταθερό.

8. Σύστημα ιδανικό ελατήριο σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη που στρέφεται με συχνότητα \[ f_δ \]. Η ταλάντωση γίνεται σε περιβάλλον μικρής απόσβεσης. Αρχικά ισχύει \[f_δ > f_0\]. Για να απορροφά ο ταλαντωτής ενέργεια απ’ το διεγέρτη με το βέλτιστο τρόπο, τότε πρέπει:
9. Ο χρόνος υποδιπλασιασμού της ενέργειας σε μια φθίνουσα μηχανική ταλάντωση που το πλάτος της μειώνεται με το χρόνο σύμφωνα με τη σχέση \[ Α=Α_0 \, e^{-Λt} \] όπου \[Λ\] θετική σταθερά είναι:
10. Τα σώματα Α, Β είναι προσδεμένα σε όμοια ελατήρια σταθεράς \[k\] και εκτελούν α.α.τ. Ο ταλαντωτής Α έχει περίοδο \[Τ_1=2π\, s\] ενώ ο Β \[Τ_2=6π\, sec\]. Αν προσδέσω μέσω νήματος τα δύο σώματα, τότε το σύστημά τους θα εκτελεί α.α.τ. δεμένο σε όμοιο με τα αρχικά ελατήριο με περίοδο \[T\] και ισχύει:
11. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση και η δύναμη αντίστασης στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[Α_0\], ενώ τη χρονική στιγμή \[t_1=4\, s\] το πλάτος του γίνεται \[Α_1=\frac{Α_0}{2}\]. Η χρονική διάρκεια \[Δt\] απ’ την \[t_1\] ως τη στιγμή \[t_2\] που το πλάτος γίνεται \[Α_2=\frac{Α_0}{8}\] είναι:
12. Σε μια φθίνουσα μηχανική ταλάντωση που την \[t=0\] το πλάτος της είναι \[A_0\], η χρονοεξίσωση του πλάτους δίνεται απ’ τη σχέση \[Α=Α_0 e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η σταθερά \[Λ\] εξαρτάται:
13. Σε μια απλή αρμονική ταλάντωση ο ταλαντωτής:
14. Ταλαντωτής εκτελεί α.α.τ. πλάτους \[Α\] και ενέργειας \[Ε_Τ\]. Για να υποδιπλασιάσουμε το πλάτος \[Α\] της α.α.τ. θα πρέπει να αφαιρέσουμε απ’ τον ταλαντωτή ενέργεια:
15. Το σύστημα των σωμάτων \[Σ_1\] , \[Σ_2\] με μάζες \[m_1=m_2\] του παρακάτω σχήματος εκτελούν α.α.τ. με ενέργεια \[Ε_1\] έτσι ώστε μόλις να φτάσει στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή κόβω ακαριαία το νήμα και το \[m_1\] συνεχίζει να εκτελεί α.α.τ. με ενέργεια \[E_2\]. Για τις ενέργειες \[Ε_1\] , \[Ε_2\] ισχύει:
16. Σε μια φθίνουσα ταλάντωση το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά και χρόνο υποδιπλασιασμού \[ t_{ \frac 12 } \]. Τη χρονική στιγμή \[ t_1=5t_{\frac 12} \] το πλάτος έχει μειωθεί κατά:
17. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης \[b\] της αντιτιθέμενης δύναμης είναι πολύ μικρή. Αρχικά το σύστημα βρίσκεται σε κατάσταση συντονισμού και η συχνότητα περιστροφής του τροχού είναι \[f_1\]. Αν αντικαταστήσω το ελατήριο με κάποιο άλλο διπλάσιας σταθεράς \[k\], για να βρεθεί το νέο σύστημα πάλι σε κατάσταση συντονισμού η συχνότητα του τροχού μεταβάλλεται στην τιμή \[f_2\]. Για τις συχνότητες \[f_1,\, f_2\] ισχύει:
18. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η ιδιοσυχνότητα του συστήματος είναι \[f_0=30\, Hz\]. Μειώνω αργά τη συχνότητα του διεγέρτη απ’ την τιμή \[f_1=35\, Hz\] στην τιμή \[f_2=27\, Hz\]. Στη διάρκεια της μείωσης αυτής:
19. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[T\], το πλάτος της την \[t=0\] είναι \[A_0\] και μεταβάλλεται με το χρόνο σύμφωνα με την \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] μια θετική σταθερά. Αν την \[t=κT\] (όπου \[κ\] θετικός ακέραιος) το πλάτος της ταλάντωσης είναι \[Α_κ\] και την \[t=(κ+1)T\] το πλάτος γίνεται \[Α_{κ+1}\], τότε το πηλίκο \[ \frac{ Α_κ } { A_{κ+1} }\] :
20. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η δυναμική ενέργεια της ταλάντωσής του:
21. Σε μια α.α.τ. την \[t=0\] ο ταλαντωτής έχει αρνητική επιτάχυνση και επιταχύνεται ενώ την ίδια στιγμή η δυναμική του ενέργεια είναι ίση με την κινητική. Η αρχική φάση της α.α.τ. είναι:
22. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια α.α.τ. για τα μεγέθη απομάκρυνση και επιτάχυνση ισχύει:
23. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Η περίοδος της ταλάντωσης:
24. Ιδανικό κατακόρυφο ελατήριο σταθεράς \[k\] έχει το πάνω άκρο του ελεύθερο σε δάπεδο ενώ το άλλο άκρο του είναι στερεωμένο σε οριζόντιο δάπεδο όπως φαίνεται στο παρακάτω σχήμα. Αρχικά τοποθετώ στο πάνω άκρο του ελατηρίου σώμα μάζας \[m\] και το αφήνω ελεύθερο απ’ τη Θ.Φ.Μ. του ελατηρίου. Το σώμα εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_1}\]. Επαναλαμβάνω το ίδιο ακριβώς πείραμα με σώμα μάζας \[4m\] και κατόπιν πάλι εκτελεί α.α.τ. με μέγιστη ταχύτητα \[υ_{max_2 }\].

Ο λόγος των μέγιστων ταχυτήτων  είναι:

25. Ταλαντωτής εκτελεί α.α.τ. ενέργειας \[Ε_Τ\]. Αν διπλασιάσω τη μέγιστη ταχύτητα του ταλαντωτή, η ενέργεια της ταλάντωσής του γίνεται \[Ε_Τ'\]. Ο λόγος \[\frac{Ε_Τ'}{Ε_Τ}\] είναι ίσος με:
26. Το έργο της δύναμης επαναφοράς \[F_{επ}\] κατά τη διαδρομή ΚΛ σε μια α.α.τ. είναι ίσο:
27. Ταλαντωτής εκτελεί α.α.τ. με περίοδο \[Τ\]. Η κινητική ενέργειά του:
28. Σε μια α.α.τ. ο ταλαντωτής την \[t=0\] έχει μέγιστη θετική επιτάχυνση. Αυτό σημαίνει ότι η αρχική φάση της ταλάντωσης είναι:
29. Ταλαντωτής εκτελεί φθίνουσα ταλάντωση με αρχικό πλάτος \[Α_0\] που η αντιτιθέμενη δύναμη στην κίνησή του είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Αν ο ίδιος ταλαντωτής εκτελούσε ίδιας μορφής ταλάντωση με ίδιο αρχικό πλάτος αλλά με μεγαλύτερη σταθερά απόσβεσης τότε:
30. Ποιες από τις παρακάτω προτάσεις που αφορούν την α.α.τ. είναι σωστές;

    +30

    CONTACT US
    CALL US