MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\] το πλάτος μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά.

Α. Να δείξετε ότι το επί τοις εκατό ποσοστό μείωσης της ενέργειας της ταλάντωσης στη διάρκεια μιας περιόδου είναι σταθερό και ίσο με:
α) \[π_2=e^{2Λt}⋅100\%\].                                                  
β) \[π_2=e^{-2Λt}⋅100\%\].          
γ) \[π_2=(1-e^{-Λt} )⋅100\%\].                                          
δ) \[π_2=(1-e^{-2Λt} )⋅100\%\].

Β. Αν η ενέργεια της ταλάντωσης την \[t=0\] είναι \[Ε_{Τ,0}=0,6 J\] και το επί τοις εκατό ποσοστό μείωσης της ενέργειας ανά περίοδο είναι \[π_2=20\%\] , τότε η ενέργεια που έχει χαθεί απ’ τον ταλαντωτή μέχρι τη στιγμή \[t_1=2T\] είναι:

α) \[|ΔΕ_Τ |=0,48 J\].      β) \[|ΔΕ_Τ |=0,384 J\].    γ) \[|ΔΕ_Τ |=0,216 J\].     δ) \[|ΔΕ_Τ |=0,36 J\].

Γ. Αν απ’ τη στιγμή \[t_0=0\] ως την \[t_1\]  έχει χαθεί ενέργεια \[0,2 J\], απ’ την \[t_1\]  ως την \[t_2=2t_1\]  πιθανόν να έχει χαθεί ενέργεια:

α) \[0,2 J\].                       β) \[0,3 J\].                       γ) \[0,1 J\].

Δ. Η μείωση της ενέργειας της ταλάντωσης (εκλυόμενη θερμότητα) ανά περίοδο με το πέρασμα του χρόνου:

α) αυξάνεται.                β) μειώνεται.                γ) μένει σταθερή.

2. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Στη θέση αυτή το ελατήριο έχει επιμήκυνση \[Δ\ell\]. Την \[t=0\] ασκώ στο σώμα σταθερή κατακόρυφη δύναμη με φορά προς τα κάτω και μέτρου \[F=3\, mg\] όπου \[g\] η επιτάχυνση της βαρύτητας. Το σώμα αρχίζει να εκτελεί α.α.τ. με σταθερά επαναφοράς \[D=k\] χωρίς η δύναμη να καταργηθεί. Το πλάτος της α.α.τ. του είναι:
3. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση με γωνιακή συχνότητα \[ω\] που το πλάτος της μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[A=A_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά.Στο παρακάτω διάγραμμα φαίνεται η μεταβολή της απομάκρυνσής του \[x\] απ’ τη Θ.Ι. του με το χρόνο. Η εξίσωση που αντιστοιχεί στο παρακάτω διάγραμμα είναι της μορφής
4. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μειώνεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Τη χρονική στιγμή \[t_1\] που ο ταλαντωτής έχει εκτελέσει ακριβώς \[4\] ταλαντώσεις, το πλάτος του υποδιπλασιάζεται. Τη χρονική στιγμή \[t_2\] κατά την οποία ο ταλαντωτής έχει εκτελέσει επιπλέον \[12\] ταλαντώσεις μετά τη χρονική στιγμή \[t_1\], το πλάτος της ταλάντωσης γίνεται:
5. Σε μια εξαναγκασμένη ταλάντωση ο ταλαντωτής έχει συντονιστεί με το διεγέρτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Το σώμα μάζας \[m_1=m\] του παρακάτω σχήματος είναι δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου που το άλλο άκρο του είναι προσδεμένο σε οροφή. Θέτω το σώμα σε α.α.τ. την \[t=0\] δίνοντάς σ’ αυτό ταχύτητα \[υ_0\] που έχει κατακόρυφη διεύθυνση και φορά προς τα πάνω στη θέση που ήταν αρχικά ακίνητο. Η πάνω ακραία θέση της α.α.τ. του είναι η θέση που το ελατήριο έχει το φυσικό του μήκος. Τη χρονική στιγμή \[t=\frac{21T}{4}\] όπου \[Τ\] η περίοδος της α.α.τ. του σώματος ακαριαία πάνω στο σώμα αφήνω ένα δεύτερο σώμα ίσης μάζας. Το σύστημα των δύο σωμάτων εκτελεί α.α.τ. με \[D=k\]. Το ποσοστό μεταβολής της ενέργειας της α.α.τ. πριν και μετά την τοποθέτηση του δεύτερου σώματος είναι:
7. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη-τροχού και με μικρή σταθερά απόσβεσης. Αυξάνω αργά τη συχνότητα του διεγέρτη από μια τιμή \[f_1\] ως μια τιμή \[f_2=40\, Hz\]. Στη διάρκεια της αύξησης αυτής παρατηρώ ότι το πλάτος της ταλάντωσης συνεχώς αυξάνεται ακόμα και αν η συχνότητα του διεγέρτη γίνει λίγο μεγαλύτερη απ’ την \[f_2\]. Απ’ αυτό συμπεραίνουμε ότι η ιδιοσυχνότητα του συστήματος είναι:
8. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη ταλάντωση και βρίσκεται σε κατάσταση συντονισμού. Στην κατάσταση αυτή:
9. Δύο ταλαντωτές με ίσες σταθερές επαναφοράς δέχονται δυνάμεις αντίστασης της μορφής \[F_{αν}=-bυ\] και εκτελούν φθίνουσες ταλαντώσεις. Στο παρακάτω διάγραμμα φαίνονται οι μεταβολές των πλατών των δύο ταλαντωτών με το χρόνο. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
10. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt} \] όπου \[Λ\] θετική σταθερά. Την \[t=0\] η ενέργεια της ταλάντωσης είναι \[E_{T,0}\]. Η χρονική στιγμή \[t_1\] που η ταλάντωση γίνεται \[ E_{T,1} = \frac{ E_{T,0} }{32 }\] είναι:
11. Σε μια φθίνουσα μηχανική ταλάντωση, το πλάτος της μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η ενέργεια της ταλάντωσης τη στιγμή \[t=0\] είναι \[ E_{T,0}\].

Α. Ο χρόνος υποδιπλασιασμού του πλάτους της ταλάντωσης είναι:

α) \[ t_{ \frac 12 } =\frac{ln2}{Λ} \].                    
β) \[t_{\frac 12}=\frac{ln2}{2Λ} \].                  
γ) \[t_{  \frac 12 }=\frac{2ln2}{Λ}  \].                  
δ) \[ t_{\frac 12}=\frac{4ln2}{Λ}  \].

B. Τη χρονική στιγμή \[t_1 = \frac{ 3ln2}{Λ}\] το επί τοις εκατό ποσοστό της αρχικής ενέργειας της ταλάντωσης που έχει εκλυθεί με μορφή θερμότητας στο περιβάλλον είναι:

α) \[π=25\%\].                   β) \[π=50\%\].                   γ) \[π=75\%\].                    δ) \[π=\frac{63}{64}⋅100\%\].

12. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της ταλάντωσης μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά και \[A_0\] το πλάτος της ταλάντωσης την \[t=0\]. Αν \[Q_1,\, Q_2,\, Q_3\] οι θερμότητες που εκλύονται απ’ τον ταλαντωτή στις χρονικές διάρκειες της πρώτης, της δεύτερης και της τρίτης περιόδου αντίστοιχα τότε αυτές συνδέονται με τις σχέσεις: (Υπόδειξη: Να θεωρήσετε ότι τη στιγμή \[t_1=N⋅T\] (\[N\] ακέραιος θετικός, \[Τ\] η περίοδος) η ενέργεια της ταλάντωσης είναι \[Ε_{Τ,Ν}=λ^Ν Ε_{Τ,0}\], όπου \[λ=\frac{ Ε_{Τ,1} }{ Ε_{Τ,0} }\] και \[Ε_{Τ,0},\, Ε_{Τ,1}\] οι ενέργειες της ταλάντωσης τις στιγμές \[t=0\] και \[t_1=T\] αντίστοιχα)
13. Απ’ τις πειραματικές μετρήσεις μιας εξαναγκασμένης ταλάντωσης συστήματος ελατηρίου-σώματος που γίνεται με τη βοήθεια διεγέρτη-τροχού προκύπτει το παρακάτω διάγραμμα που δείχνει τη μεταβολή του πλάτους της ταλάντωσης με τη συχνότητα του διεγέρτη. Το πείραμα γίνεται με συγκεκριμένη σταθερά απόσβεσης \[b\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\] και αρχικής ενέργειας \[E_{T,0}\] που το πλάτος του μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] με \[Λ\] θετική σταθερά. Τη χρονική στιγμή \[t_1=25\, T\] το πλάτος του ταλαντωτή γίνεται \[ Α_1 = \frac{ Α_0 }{ 32 } \]. Τη χρονική στιγμή \[t_2 = 15\, Τ\] η ενέργεια του ταλαντωτή είναι:
15. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν αντικαταστήσω το ελατήριο με άλλο διπλάσιας σταθεράς \[k\] χωρίς να μεταβάλω το πλάτος της α.α.τ., τότε:
16. Στο θάλαμο της πειραματικής διάταξης φθίνουσας ταλάντωσης του παρακάτω σχήματος εκτρέπω το σώμα κατά \[A_0\] κάτω από τη Θ.Ι. και το αφήνω από εκεί ελεύθερο. Το σώμα εκτελεί ταλάντωση μέχρι να σταματήσει σε χρόνο \[Δt_1\] εκπέμποντας σ’ όλη τη διάρκεια της κίνησής του θερμότητα \[Q_1\]. Αυξάνω την πίεση του αέρα και έτσι αυξάνω τη σταθερά απόσβεσης \[b\] και επαναλαμβάνω το ίδιο πείραμα εκτρέποντας αρχικά το σώμα κατά την ίδια \[A_0\]. Τώρα το σώμα σταματά σε χρόνο \[Δt_2\] και εκπέμπει θερμότητα \[Q_2\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Στα δύο παραπάνω πειράματα:
17. Το πλάτος της εξαναγκασμένης μηχανικής ταλάντωσης:
18. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση που η αντιτιθέμενη δύναμη είναι της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Η σταθερά \[b\] είναι πολύ μικρή. Στη διάρκεια μιας περιόδου ο ρυθμός παραγωγής θερμότητας στον ταλαντωτή:
19. Σε μια φθίνουσα μηχανική ταλάντωση που η δύναμη της αντίστασης στην κίνηση συνδέεται με την ταχύτητα του ταλαντωτή σύμφωνα με τη σχέση \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης. Τότε για τη γωνιακή ταχύτητα της ταλάντωσης ισχύει η σχέση \[ω=\sqrt{ \frac{D } {m}-\left( \frac{b}{2m} \right)^2 }\]. Αν αυξήσω τη σταθερά \[b\], θα αυξηθεί και η περίοδος της φθίνουσας ταλάντωσης. Για να θεωρηθεί η αύξηση αυτή της περιόδου αμελητέα, πρέπει:
20. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Στη θέση αυτή την \[t=0\] προσδίνω στο σώμα ταχύτητα \[υ_0\] που έχει τη διεύθυνση του άξονα του ελατηρίου. Το σύστημα αρχίζει να εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
21. Τρεις ανεξάρτητοι πανομοιότυποι ταλαντωτές βρίσκονται αντίστοιχα σε τρεις πειραματικούς θαλάμους και μπορούν να εκτελούν φθίνουσες μηχανικές ταλαντώσεις με δύναμη αντίστασης που εξαρτάται απ’ την ταχύτητα του καθενός σύμφωνα με τη σχέση \[F_{αν}=-bυ\], όπου \[b\] η σταθερά απόσβεσης που αντιστοιχεί στον καθένα. Οι θάλαμοι περιέχουν αέρα που στον καθένα η πίεση είναι \[P_1,\, P_2,\, P_3\] αντίστοιχα. Προσφέρουμε στον καθένα την ίδια ενέργεια \[E_{T,0}\] και ταυτόχρονα την \[t=0\] τους αφήνουμε ελεύθερους να ταλαντωθούν. Στο παραπάνω διάγραμμα φαίνονται οι μεταβολές των ενεργειών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των πιέσεων στους τρεις θαλάμους ισχύει:
22. Ταλαντωτής έχει κυκλική ιδιοσυχνότητα \[ω_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[Α\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0\, συνω_δ t\]. Οι χρονοεξισώσεις της απομάκρυνσης και της ταχύτητας του ταλαντωτή για μεγάλους χρόνους \[t\] γράφονται:
23. Σώμα ισορροπεί ακίνητο στο κάτω άκρο ιδανικού ελατηρίου που το άλλο άκρο του είναι ακλόνητα στερεωμένο. Το σύστημα βρίσκεται σε λείο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\]. Με κατάλληλο μηχανισμό μπορώ να μεταβάλω τη γωνία \[φ\]. Αρχικά \[φ=30^0\]. Εκτρέπω το σώμα κατά \[x_0\] προς τα κάτω κατά τη διεύθυνση του κεκλιμένου επιπέδου και απ’ τη θέση αυτή το αφήνω. Το σύστημα εκτελεί α.α.τ. Μεταβάλλω τη \[φ\] μέχρι να γίνει \[φ'=60^0\]. Επαναλαμβάνω ακριβώς το ίδιο πείραμα εκτρέποντας κατά το ίδιο \[x_0\] το σώμα απ’ τη Θ.Ι. του. Ποιο μέγεθος θα μεταβληθεί;
24. Ο ταλαντωτής ιδιοσυχνότητας \[f_0\] εκτελεί εξαναγκασμένη μηχανική ταλάντωση πλάτους \[Α\] με σταθερή συχνότητα διεγέρτη \[f_δ ≠ f_0\]. Ποιες από τις επόμενες προτάσεις είναι σωστές;
25. Ταλαντωτής έχει ιδιοσυχνότητα \[f_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[A\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0\, συν2πf_δ t\]. Η χρονοεξίσωση της επιτάχυνσης του ταλαντωτή γράφεται:
26. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το πάνω άκρο του είναι προσδεδεμένο σε οροφή. Στη θέση αυτή το ελατήριο είναι επιμηκυμένο κατά \[Δ\ell\]. Την \[t=0\] δίνω στο σώμα κατακόρυφη ταχύτητα \[υ_0\] με φορά προς τα πάνω και αυτό αρχίζει να εκτελεί α.α.τ. με σταθερά επαναφοράς \[D=k\] και πλάτος ίσο με το \[Δ\ell\]. Τη χρονική στιγμή \[t_1=\frac{15T}{4}\] όπου \[Τ\] η περίοδος της α.α.τ. του σώματος τοποθετώ σ’ αυτό χωρίς αρχική ταχύτητα δεύτερο σώμα ίδιας μάζας \[m\]. Αμέσως μετά την τοποθέτηση, το σύστημα των δύο σωμάτων:
27. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Σε μια φθίνουσα μηχανική ταλάντωση που η αντιτιθέμενη δύναμη στην κίνηση είναι της μορφής \[F_{αν}=-bυ\], όπου \[b\] η σταθερά απόσβεσης, αν αυξήσω ελάχιστα τη σταθερά απόσβεσης τότε:
28. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Ο ρυθμός μεταβολής της δυναμικής ενέργειας της α.α.τ.
29. Το σύστημα ιδανικό ελατήριο-σώμα του παρακάτω σχήματος εκτελεί ταλάντωση σε θάλαμο που η πίεση του αέρα στο εσωτερικό του μπορεί να μεταβληθεί. Αρχικά το πλάτος έχει τιμή \[A_1\] και ο διεγέρτης συχνότητα \[f_δ\]. Αυξάνω την πίεση του αέρα στο θάλαμο χωρίς να μεταβάλω τη συχνότητα του διεγέρτη και τότε το πλάτος της ταλάντωσης είναι \[Α_2\] και ισχύει: (Να θεωρήσετε ότι και για τις δύο παραπάνω συχνότητες οι σταθερές απόσβεσης είναι πολύ μικρές.)
30. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Απ’ τη θέση αυτή εκτρέπω το σώμα κατά \[x_0\] απ’ τη Θ.Ι. του κατά τη διεύθυνση του άξονα του ελατηρίου και απ’ τη θέση αυτή την \[t=0\] του προσδίνω ταχύτητα \[υ_0\] ίδιας διεύθυνσης με αυτήν της \[x_0\]. Το σώμα αρχίζει να εκτελεί α.α.τ. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;

    +30

    CONTACT US
    CALL US