MENU

Τεστ στις ταλαντώσεις (Επίπεδο δυσκολίας: Δύσκολο)

Να επιλέξετε τις σωστές απαντήσεις στις ερωτήσεις που ακολουθούν.

Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.


Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. Σε μια φθίνουσα μηχανική ταλάντωση, το πλάτος της μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Η ενέργεια της ταλάντωσης τη στιγμή \[t=0\] είναι \[ E_{T,0}\].

Α. Ο χρόνος υποδιπλασιασμού του πλάτους της ταλάντωσης είναι:

α) \[ t_{ \frac 12 } =\frac{ln2}{Λ} \].                    
β) \[t_{\frac 12}=\frac{ln2}{2Λ} \].                  
γ) \[t_{  \frac 12 }=\frac{2ln2}{Λ}  \].                  
δ) \[ t_{\frac 12}=\frac{4ln2}{Λ}  \].

B. Τη χρονική στιγμή \[t_1 = \frac{ 3ln2}{Λ}\] το επί τοις εκατό ποσοστό της αρχικής ενέργειας της ταλάντωσης που έχει εκλυθεί με μορφή θερμότητας στο περιβάλλον είναι:

α) \[π=25\%\].                   β) \[π=50\%\].                   γ) \[π=75\%\].                    δ) \[π=\frac{63}{64}⋅100\%\].

2. Σε μια εξαναγκασμένη ταλάντωση ο ταλαντωτής έχει συντονιστεί με το διεγέρτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
3. Ταλαντωτής έχει μάζα \[m\] και γωνιακή ιδιοσυχνότητα \[ω_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση με μικρή σταθερά απόσβεσης και σταθερού πλάτους \[Α\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0 συνω_δ t\]. Η χρονοεξίσωση της δυναμικής ενέργειας της ταλάντωσης για μεγάλους χρόνους \[t\] γράφεται:
4. Σώμα ισορροπεί ακίνητο δεμένο στο ένα άκρο ιδανικού οριζόντιου ελατηρίου που το άλλο του άκρο είναι ακλόνητα στερεωμένο. Η Θ.Ι. του σώματος ταυτίζεται με τη θέση που το ελατήριο έχει το φυσικό του μήκος. Ασκώ στο σώμα σταθερή οριζόντια δύναμη μέτρου \[F\] κατά τη διεύθυνση του άξονα του ελατηρίου και αυτό αρχίζει να επιμηκύνεται. Το σώμα εκτελεί α.α.τ. Ποιες απ’ τις επόμενες προτάσεις είναι σωστές;
5. Σώμα μάζας \[m\] ισορροπεί ακίνητο στο κάτω άκρο ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι ακλόνητα στερεωμένο. Το σύστημα βρίσκεται σε λείο κεκλιμένο επίπεδο γωνίας κλίσης \[φ\]. Στο σώμα ασκείται το βάρος, η δύναμη του ελατηρίου και η κάθετη αντίδραση από το κεκλιμένο επίπεδο. Ανυψώνω το σώμα κατά τη διεύθυνση του κεκλιμένου επιπέδου μέχρι τη θέση που το ελατήριο έχει το φυσικό του μήκος και απ’ τη θέση αυτή το αφήνω την \[t=0\] και αυτό εκτελεί α.α.τ. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
6. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια διεγέρτη τροχού και με μικρή σταθερά απόσβεσης. Μειώνω αργά τη συχνότητα του διεγέρτη από μια τιμή \[f_1\] ως την τιμή \[f_2=60\, Hz\]. Στη διάρκεια της μείωσης αυτής παρατηρώ ότι το πλάτος της ταλάντωσης συνεχώς αυξάνεται ακόμα και αν η συχνότητα του διεγέρτη γίνει λίγο μικρότερη της \[f_2\]. Απ’ αυτό συμπεραίνουμε ότι η ιδιοσυχνότητα του συστήματος \[f_0\] είναι:
7. Σώμα εκτελεί φθίνουσα μηχανική ταλάντωση και το πλάτος της μεταβάλλεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[A_0\] το πλάτος τη στιγμή \[t=0\] και \[Λ\] μια θετική σταθερά. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για συγκεκριμένη τιμή της σταθεράς απόσβεσης \[b\]:
8. Το σώμα του παρακάτω σχήματος ισορροπεί στο κάτω άκρο ιδανικού ελατηρίου σταθεράς \[k\] και βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης \[φ=30^0\]. Στη θέση ισορροπίας του σώματος, το ελατήριο είναι συσπειρωμένο με τη βοήθεια αβαρούς νήματος. Στη θέση αυτή το μέτρο της δύναμης του ελατηρίου είναι ίσο με το μισό του μέτρου του βάρους του σώματος.

Την  κόβω το νήμα και το σώμα αρχίζει να εκτελεί α.α.τ. σταθεράς  με θετική φορά πάνω

Α) Η ενέργεια της α.α.τ. του σώματος είναι:

α) \[\frac{m^2 g^2}{2k}\],                        β) \[\frac{m^2 g^2}{4k}\],                        γ) \[\frac{m^2 g^2}{8k}\].

B) Η χρονική στιγμή που το σώμα περνά απ’ τη θέση που το ελατήριο έχει το φυσικό του μήκος για πρώτη φορά είναι:

α) \[π \sqrt{   \frac{ m }{ k } }\],                      
β) \[\frac{π}{3} \sqrt{\frac{m}{k}  }\],                      
γ) \[\frac{π}{4} \sqrt{     \frac{m}{k}    }\].

9. Σε μια φθίνουσα αρμονική ταλάντωση το πλάτος της δίνεται απ’ τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Τη χρονική στιγμή \[t_1\] που ο ταλαντωτής ολοκληρώνει τις πρώτες \[8\] πλήρεις ταλαντώσεις του το πλάτος του υποτετραπλασιάζεται. Τη στιγμή \[t_2\] που ο ταλαντωτής εκτελεί επιπλέον \[16\] πλήρεις ταλαντώσεις μετά τη στιγμή \[t_1\] το πλάτος του ταλαντωτή \[A_2\] είναι:
10. Δύο συστήματα ελατήριο-σώμα \[(1),\, (2)\] έχουν σταθερές ελατηρίου και μάζες σωμάτων που συνδέονται απ’ τις σχέσεις \[k_1=4 k_2\] και \[m_1 = m_2\]. Τα δύο συστήματα εκτελούν εξαναγκασμένες μηχανικές ταλαντώσεις ίδιας σταθεράς απόσβεσης και κάτω απ’ την επίδραση της ίδιας διεγείρουσας δύναμης που έχει εξίσωση \[F_δ = F_0 συνωt\].
11. Μικρό σώμα μάζας \[m\] ισορροπεί δεμένο στο άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το πάνω άκρο του είναι δεμένο στην οροφή του πειραματικού θαλάμου της φθίνουσας ταλάντωσης και περιέχει αέρα σταθερής πίεσης. Εκτρέπω το σώμα κατακόρυφα με φορά προς τα κάτω που τη θεωρώ θετική κατά \[x_0=A_0\] απ’ τη θέση ισορροπίας Α \[(x=0)\] και κατόπιν το αφήνω ελεύθερο. Το σώμα κατά την κίνησή του δέχεται δύναμη αντίστασης της μορφής \[F_{αν}=-bυ\] όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Στη διάρκεια της πρώτης περιόδου η μέγιστη ταχύτητα που αποκτά έχει μέτρο \[υ_{max,0}\]. Ο ταλαντωτής στην παραπάνω διάρκεια αποκτά μέγιστη κατά μέτρο ταχύτητα:
12. Η χρονοεξίσωση της δυναμικής ενέργειας ταλαντωτή που εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[A\] είναι \[U_T=\frac{1}{2} mω_1^2 Α^2 ημ^2 (ω_2 t+φ_0)\].
13. Σε μια εξαναγκασμένη μηχανική ταλάντωση ο ταλαντωτής απορροφά επιλεκτικά ενέργεια απ’ το διεγέρτη. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
14. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος μειώνεται σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά. Απ’ τη στιγμή \[t=0\] ως τη στιγμή \[t_1\] το επί τοις εκατό ποσοστό μεταβολής της ενέργειας της ταλάντωσης είναι \[π_2=-\frac{63}{64}⋅100 \% \]. Στο ίδιο χρονικό διάστημα το επί τοις εκατό ποσοστό μεταβολής του πλάτους της ταλάντωσης είναι:
15. Στο θάλαμο της πειραματικής διάταξης για τη μελέτη μιας φθίνουσας μηχανικής ταλάντωσης διατηρούμε την πίεση του αέρα που περιέχει σταθερή και διεγείρουμε το σύστημα ελατήριο-σώμα ώστε ν’ αρχίσει να ταλαντώνεται προσφέροντάς του την \[t=0\] αρχική ενέργεια \[E_{T,0}\]. Την \[t=0\] ο ταλαντωτής έχει πλάτος \[A_0\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
16. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη σε θάλαμο που μπορούμε να μεταβάλλουμε την πίεση του αέρα που περιέχει. Εκτελώ δύο διαφορετικά πειράματα (1), (2) στα οποία οι σταθερές επαναφοράς είναι \[b_1 < b_2\]. Να αντιστοιχήσετε τα μεγέθη τις σταθερές απόσβεσης με τα αντίστοιχα διαγράμματα.1) \[b=0\]
2) \[b_1\]
3) \[b_2\]
17. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με τη βοήθεια τροχού-διεγέρτη. Η σταθερά απόσβεσης είναι πολύ μικρή. Στο παρακάτω σχήμα φαίνεται η μεταβολή του πλάτους της ταλάντωσης με τη συχνότητα του διεγέρτη \[ f_δ\]. Ο διεγέρτης έχει σταθερή συχνότητα \[ f_1\]. Για να απορροφά ο ταλαντωτής ενέργεια απ’ το διεγέρτη με το βέλτιστο τρόπο στην παραπάνω συχνότητα \[f_1\] πρέπει:
18. Σώμα εκτελεί φθίνουσα ταλάντωση και η αντιτιθέμενη δύναμη που δέχεται είναι της μορφής \[ΣF=-bυ\], όπου \[b\] η σταθερά απόσβεσης και \[υ\] η αλγεβρική τιμή της ταχύτητάς του. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
19. Σε μια φθίνουσα μηχανική ταλάντωση το πλάτος της ταλάντωσης μειώνεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] όπου \[Λ\] θετική σταθερά και \[A_0\] το πλάτος της ταλάντωσης την \[t=0\]. Αν \[Q_1,\, Q_2,\, Q_3\] οι θερμότητες που εκλύονται απ’ τον ταλαντωτή στις χρονικές διάρκειες της πρώτης, της δεύτερης και της τρίτης περιόδου αντίστοιχα τότε αυτές συνδέονται με τις σχέσεις: (Υπόδειξη: Να θεωρήσετε ότι τη στιγμή \[t_1=N⋅T\] (\[N\] ακέραιος θετικός, \[Τ\] η περίοδος) η ενέργεια της ταλάντωσης είναι \[Ε_{Τ,Ν}=λ^Ν Ε_{Τ,0}\], όπου \[λ=\frac{ Ε_{Τ,1} }{ Ε_{Τ,0} }\] και \[Ε_{Τ,0},\, Ε_{Τ,1}\] οι ενέργειες της ταλάντωσης τις στιγμές \[t=0\] και \[t_1=T\] αντίστοιχα)
20. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί α.α.τ. Αν αντικαταστήσω το ελατήριο με άλλο διπλάσιας σταθεράς \[k\] χωρίς να μεταβάλω το πλάτος της α.α.τ., τότε:
21. Ταλαντωτής έχει κυκλική ιδιοσυχνότητα \[ω_0\] και εκτελεί εξαναγκασμένη μηχανική ταλάντωση σταθερού πλάτους \[Α\] με την επίδραση διεγείρουσας δύναμης \[F_δ\] που έχει τη μορφή \[F_δ=F_0\, συνω_δ t\]. Οι χρονοεξισώσεις της απομάκρυνσης και της ταχύτητας του ταλαντωτή για μεγάλους χρόνους \[t\] γράφονται:
22. Σύστημα ιδανικό ελατήριο-σώμα εκτελεί εξαναγκασμένη μηχανική ταλάντωση με πολύ μικρή σταθερά απόσβεσης \[b\] και με τη βοήθεια διεγέρτη τροχού. Το σύστημα έχει ιδιοσυχνότητα \[f_0\] και ο διεγέρτης ιδιοσυχνότητα \[f_δ\]. Αρχικά το σύστημα δε βρίσκεται σε συντονισμό. Ποιες από τις παρακάτω προτάσεις είναι σωστές; Για να βρεθεί το σύστημα σε κατάσταση συντονισμού πρέπει:
23. Σύστημα ιδανικό ελατήριο-σώμα βρίσκεται σε λείο οριζόντιο επίπεδο και ισορροπεί ακίνητο στη θέση που το ελατήριο έχει το φυσικό του μήκος. Εκτρέπω το σώμα απ’ τη Θ.Ι. του κατά \[x_0\] στη διεύθυνση του άξονα του ελατηρίου και απ’ τη θέση αυτή το αφήνω ελεύθερο να κινηθεί. Το σύστημα εκτελεί α.α.τ. Αν επαναλάβω το ίδιο πείραμα διπλασιάζοντας την αρχική εκτροπή \[x_0\], ποιες από τις παρακάτω προτάσεις είναι σωστές;
24. Δύο όμοια ιδανικά ελατήρια κρέμονται από ακλόνητα σημεία. Στα κάτω άκρα των ελατηρίων προσδένονται σώματα \[Σ_1\] μάζας \[m_1\] και \[Σ_2\] μάζας \[m_2\]. Κάτω απ’ το σώμα \[Σ_1\] δένουμε μέσω αβαρούς νήματος άλλο σώμα μάζας \[m_2\] ενώ κάτω απ’ το \[Σ_2\] δένουμε σώμα μάζας \[m_1\] (\[m_1≠m_2\] όπως φαίνεται στο ακόλουθο σχήμα). Αρχικά τα σώματα είναι ακίνητα. Κάποια χρονική στιγμή κόβουμε τα νήματα και τα σώματα \[Σ_1\] , \[Σ_2\] αρχίζουν να ταλαντώνονται. Αν η ενέργεια της α.α.τ. του \[Σ_1\] είναι \[Ε_1\] και του \[Σ_2\] είναι \[Ε_2\], τότε ισχύει:
25. Σώμα ισορροπεί ακίνητο και δεμένο στο πάνω άκρο κατακόρυφου ελατηρίου το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε δάπεδο. Ανυψώνω το σώμα κατακόρυφα μέχρι το ελατήριο να αποκτήσει το φυσικό του μήκος. Απ’ τη θέση αυτή την \[t=0\] το αφήνω να εκτελέσει α.α.τ. Το σώμα δέχεται τη δύναμη του ελατηρίου και το βάρος του. Η συσπείρωση του ελατηρίου στη Θ.Ι. του σώματος είναι ίση με \[Δ\ell\]. Ποιες από τις παρακάτω προτάσεις είναι σωστές;
26. Ταλαντωτής εκτελεί φθίνουσα μηχανική ταλάντωση περιόδου \[Τ\] και αρχικής ενέργειας \[E_{T,0}\] που το πλάτος του μεταβάλλεται με το χρόνο σύμφωνα με τη σχέση \[Α=Α_0\, e^{-Λt}\] με \[Λ\] θετική σταθερά. Τη χρονική στιγμή \[t_1=25\, T\] το πλάτος του ταλαντωτή γίνεται \[ Α_1 = \frac{ Α_0 }{ 32 } \]. Τη χρονική στιγμή \[t_2 = 15\, Τ\] η ενέργεια του ταλαντωτή είναι:
27. Στο άκρο ιδανικού ελατηρίου σταθεράς \[k\] έχουμε συνδέσει σώμα μάζας \[m_1=m\] που με τη σειρά του είναι συνδεμένο μέσω αβαρούς και μη εκτετού νήματος με δεύτερο σώμα μάζας \[m_2=m\]. Το συνολικό σύστημα εκτελεί εξαναγκασμένη ταλάντωση με τη βοήθεια τροχού-διεγέρτη που έχει σταθερή συχνότητα \[f_δ=\frac{1}{2π} \sqrt{\frac km}\] . Κάποια χρονική στιγμή κόβουμε το νήμα και το σώμα μάζας \[m_1\] εξακολουθεί να εκτελεί εξαναγκασμένη ταλάντωση.

Α) Αν οι συχνότητες των ταλαντώσεων πριν και μετά το κόψιμο του νήματος είναι αντίστοιχα \[f_1\]  και \[f_2\]  τότε ισχύει:

α) \[f_1=\frac{1}{2π} \sqrt{ \frac{k}{2m} }\]  ,  \[f_2=\frac{1}{2π} \sqrt{  \frac km  }\].

β) \[ f_1 = f_2 = \frac{1}{2π} \sqrt{\frac{k}{2m}} \].

γ) \[f_1 = f_2 = \frac{1}{2π} \sqrt{\frac{ k }{ m }  } \].

Β) Αν τα πλάτη των ταλαντώσεων πριν και μετά το κόψιμο του νήματος είναι αντίστοιχα \[A_1,\, A_2\]  τότε ισχύει:

α) \[Α_1 = Α_2\].               β) \[ Α_2 > Α_1 \].                           γ) \[Α_1  > Α_2\].

28. Τρεις ανεξάρτητοι πανομοιότυποι ταλαντωτές βρίσκονται αντίστοιχα σε τρεις πειραματικούς θαλάμους και μπορούν να εκτελούν φθίνουσες μηχανικές ταλαντώσεις με δύναμη αντίστασης που εξαρτάται απ’ την ταχύτητα του καθενός σύμφωνα με τη σχέση \[F_{αν}=-bυ\], όπου \[b\] η σταθερά απόσβεσης που αντιστοιχεί στον καθένα. Οι θάλαμοι περιέχουν αέρα που στον καθένα η πίεση είναι \[P_1,\, P_2,\, P_3\] αντίστοιχα. Προσφέρουμε στον καθένα την ίδια ενέργεια \[E_{T,0}\] και ταυτόχρονα την \[t=0\] τους αφήνουμε ελεύθερους να ταλαντωθούν. Στο παραπάνω διάγραμμα φαίνονται οι μεταβολές των ενεργειών τους με το χρόνο σε κοινό σύστημα αξόνων. Για τις σχέσεις των πιέσεων στους τρεις θαλάμους ισχύει:
29. Σώμα εκτελεί α.α.τ. περιόδου \[ Τ \]. Στο παρακάτω σχήμα φαίνεται η μεταβολή της επιτάχυνσης του σώματος σε συνάρτηση με το χρόνο. Ποιες από τις επόμενες προτάσεις είναι σωστές;
30. Το σώμα μάζας \[m\] του παρακάτω σχήματος ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς \[k\] που το άλλο άκρο του είναι προσδεμένο σε οροφή. Στη θέση αυτή το ελατήριο έχει επιμήκυνση \[Δ\ell\]. Την \[t=0\] ασκώ στο σώμα σταθερή κατακόρυφη δύναμη με φορά προς τα κάτω και μέτρου \[F=3\, mg\] όπου \[g\] η επιτάχυνση της βαρύτητας. Το σώμα αρχίζει να εκτελεί α.α.τ. με σταθερά επαναφοράς \[D=k\] χωρίς η δύναμη να καταργηθεί. Το πλάτος της α.α.τ. του είναι:

    +30

    CONTACT US
    CALL US