MENU

Τεστ Μαθηματικών: Σωστό-Λάθος Πανελλαδικών

Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις ερωτήσεις που ακολουθούν.
Προσοχή:

  1. Θα πρέπει να απαντηθούν όλες οι ερωτήσεις.
  2. Η κάθε ερώτηση έχει μοναδική απάντηση.

Παρακαλούμε συμπληρώστε τα προσωπικά σας στοιχεία:

Επώνυμο
Όνομα
Email
1. \[(\ln |x|)'=-\frac{1}{x}\] για κάθε \[x<0\].
2. Αν \[\alpha>1\], τότε \[\lim_{x\to -\infty}\alpha^x =0\].
3. Αν μια συνάρτηση \[f\] είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα \[(\alpha,\beta)\], τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα \[(A,B)\], όπου \[Α=\lim_{x\to \alpha^+}f(x)\] και \[Β=\lim_{x\to \beta^-}f(x)\].
4. Έστω \[f\] μια συνεχής συνάρτηση σ’ ένα διάστημα \[[\alpha,\beta]\]. Αν \[G\] είναι μια παράγουσα της \[f\] στο \[[\alpha,\beta]\], τότε \[\int_\alpha^\beta f(t) dt = G(\beta) - G(\alpha)\].
5. Έστω μια συνάρτηση \[f\] ορισμένη σε ένα διάστημα \[\Delta\] και \[x_0\] ένα εσωτερικό σημείο του \[\Delta\]. Αν η \[f\] είναι παραγωγίσιμη στο \[x_0\] και \[f'(x_0)=0\], τότε η \[f\] παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο \[x_0\].
6. Αν η \[f\] είναι μια συνεχής συνάρτηση σε ένα διάστημα \[\Delta\] και \[a\in\Delta\], τότε ισχύει \[\left( \int_a^x f(t) dt \right)' = f(x)-f(a)\] για κάθε \[x\in\Delta\].
7. Αν \[\lim_{x\to x_0} f(x)>0\], τότε \[f(x)>0\] κοντά στο \[x_0\].
8. Για κάθε συνάρτηση \[f\] ορισμένη και δύο φορές παραγωγίσιμη στο \[\mathbb{R}\], αν για κάποιο \[x_0\in\mathbb{R}\] ισχύει \[f''(x_0)=0\], τότε το \[x_0\] είναι θέση σημείου καμπής της \[f\].
9. Η συνάρτηση \[f(x)=\eta\mu x\], \[x\in\mathbb{R}\], έχει μία μόνο θέση ολικού μεγίστου.
10. Για κάθε ζεύγος συναρτήσεων \[f:\mathbb{R}\to \mathbb{R}\] και \[g:\mathbb{R}\to \mathbb{R}\], αν \[\lim_{x\to x_0} f(x)=0\] και \[\lim_{x\to x_0}g(x) = +\infty\],τότε \[\lim_{x\to x_0}[f(x)\cdot g(x)]=0\].
11. Αν υπάρχει το όριο της συνάρτησης \[f\] στο \[x_0\] και \[\lim_{x\to x_0} |f(x)|=0\], τότε \[\lim_{x\to x_0}f(x)=0\].
12. Δίνεται ότι η συνάρτηση \[f\] παραγωγίζεται στο \[\mathbb{R}\] και ότι η γραφική της παράσταση είναι πάνω από τον άξονα \[x'x\]. Αν υπάρχει κάποιο σημείο \[A(x_0,f(x_0))\] της \[C_f\], του οποίου η απόσταση από τον άξονα \[x'x\] είναι μέγιστη (ή ελάχιστη), τότε σε αυτό το σημείο η εφαπτομένη της \[C_f\] είναι οριζόντια.
13. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] θα λέμε ότι παρουσιάζει στο \[x_0\in A\] (ολικό) μέγιστο το \[f(x_0)\], όταν \[f(x)\le f(x_0)\] για κάθε \[x\in A\].
14. Αν \[\lim_{x\to x_0} f(x)<0\], τότε \[f(x)<0\] κοντά στο \[x_0\].
15. \[\lim_{x\to -\infty }e^x = -\infty\].
16. Η γραφική παράσταση της \[|f|\] αποτελείται από τα τμήματα της γραφικής παράστασης της \[f\] που βρίσκονται πάνω από τον άξονα \[x'x\] και από τα συμμετρικά, ως προς τον άξονα \[x'x\], των τμημάτων της γραφικής παράστασης της \[f\] που βρίσκονται κάτω από αυτόν τον άξονα.
17. Έστω μια συνάρτηση \[f\] συνεχής σε ένα διάστημα \[\Delta\] και δυο φορές παραγωγίσιμη στο εσωτερικό του \[\Delta\]. Αν η \[f\] είναι κυρτή στο \[\Delta\], τότε υποχρεωτικά \[f''(x)>0\] για κάθε εσωτερικό σημείο του \[\Delta\].
18. Για κάθε συνάρτηση \[f\], το μεγαλύτερο από τα τοπικά μέγιστα της \[f\], εφόσον υπάρχουν, είναι το ολικό μέγιστο της \[f\].
19. \[(\sigma \upsilon \nu x)' = \eta \mu x\], \[x\in \mathbb{R}\].
20. Κάθε συνάρτηση \[f:\mathbb{R}\to\mathbb{R}\] που είναι 1-1 είναι και γνησίως μονότονη.
21. Αν μια συνάρτηση \[f\] είναι γνησίως μονότονη σε ένα διάστημα \[\Delta\], τότε είναι και 1-1 στο διάστημα αυτό.
22. Αν \[f,g\] είναι δύο συναρτήσεις και ορίζονται οι συνθέσεις \[f\circ g\] και \[g\circ f\], τότε είναι υποχρεωτικά \[f\circ g = g\circ f\].
23. Μία συνάρτηση \[f\] με πεδίο ορισμού \[A\] λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο \[x_0\in A\], όταν \[f(x)\ge f(x_0)\] για κάθε \[x\in A\].
24. Αν \[\lim_{x\to x_0} f(x) =+\infty\], τότε \[f(x)>0\] για κάθε \[x\] κοντά στο \[x_0\].
25. Η γραφική παράσταση μιας συνάρτησης \[f:\mathbb{R}\to\mathbb{R}\] μπορεί να τέμνει μια ασύμπτωτή της.
26. Αν \[f(x) = \ln |x|\] για κάθε \[x\ne 0\], τότε \[f'(x) =\frac{1}{|x|}\], για κάθε \[x\ne 0\].
27. Αν \[f(x) = a^x\], \[a>0\], τότε ισχύει \[(a^x)′=x\cdot a^{x−1}\].
28. Αν η \[f\] είναι μια συνεχής συνάρτηση στο \[[\alpha,\beta]\], η οποία δεν είναι παντού μηδέν στο διάστημα αυτό και \[\int_\alpha^\beta f(x) dx =0\], τότε η \[f\] παίρνει δύο τουλάχιστον ετερόσημες τιμές στο \[[\alpha, \beta]\].
29. Αν \[f,g,g'\] είναι συνεχείς συναρτήσεις στο διάστημα \[[\alpha, \beta]\], τότε \[\int_\alpha^\beta f(x) \cdot g'(x) dx =\int_\alpha^\beta f(x) dx \cdot \int_\alpha^\beta g'(x) dx \].
30. Έστω μια συνάρτηση \[f\] που είναι ορισμένη σε ένα σύνολο της μορφής \[(\alpha,x_0)∪(x_0,\beta)\]. Ισχύει η ισοδυναμία: \[\lim_{x\to x_0} f(x)=-\infty \Leftrightarrow \lim_{x\to x_0^-}f(x)=-\infty=\lim_{x\to x_0^+} f(x)\].

    +30

    CONTACT US
    CALL US